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ABSTRACT 

The endeavor to produce quality products coupled with a drive to minimize fail­

ure in major industries such as aerospace, power and transportation is the driving 

force behind studies of electromagnetic nondestructive evaluation (NDE) methods. 

Popular domain and integral methods used for the purpose of modeling electromag­

netic NDE phenomena include the finite element and boundary element methods. 

However no single numerical modeling technique has emerged as the optimal choice 

for all electromagnetic NDE processes. In a computer aided design environment, 

where the choice of an optimum modeling technique is critical, an evaluation of the 

various aspects of different numerical approaches is extremely helpful. 

In this dissertation, a comparison is made of the relative advantages and disad­

vantages of the finite element (FE) and boundary element (BE) methods as applied 

to the DC and AC Potential drop (DCPD and ACPD) methods for characterizing 

fatigue cracks. The comparison covers aspects of robustness, computer resource re­

quirements and ease of numerically implementing the methods. Two dimensional FE 

and BE models are used to model an infinitely thin fatigue crack using the ACPD 

method, and a two and three dimensional FE and BE model is used to study the com­

pact tension and single edge notch specimen using the DCPD method. Calibration 

curves and field plots in the specimen are compared to experimental and analytical 
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data. The FE and BE methods are complementary numerical techniques and are 

combined to exploit their individual merits in the latter part of this dissertation. A 

three dimensional hybrid formulation to model eddy current NDE is then developed 

which discretizes the interior with finite elements and the exterior with boundary, 

elements. The three dimensional model is applied to an absolute eddy current coil 

over a finite block. A feasibility study to confirm the validity of the formulation is 

undertaken by comparing the numerical results for probe lift-off and coil impedance 

measurements with published data. 

This comparative study outlined above indicates that when the solution is re­

quired at discrete points, as in the potential drop methods, or the model needs to 

handle infinite boundaries, as in eddy current NDE, the boundary element model 

is more suitable. Since it is based on the Green's function, the BE method is lim­

ited to linear problems. Finite element analysis gives full field solutions, making it 

ideal for studying energy/defect interactions. The hybrid FE/BE formulation han­

dles non-linearity and infinite boundaries naturally, thus utilizing the best of both 

worlds. 
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CHAPTER 1. INTRODUCTION 

Mathematical Modeling of NDE Phenomena 

The endeavor to produce quality products coupled with a drive to minimize fail­

ure in major industries such as power, aerospace and transportation has provided 

the major impetus for new developments in nondestructive evaluation (NDE). This 

past decade has seen the rapid growth in computer technology, and resources, with 

increased usage of a computer aided design (CAD) environment. The increased de­

mands on industry to provide reliable methods for detecting flaws is making NDE an 

integral part of the design process. 

Any nondestructive testing (NDT) system consists of an energy source, the input 

transducer coupled to the material, the energy/defect interaction in the material, 

an output transducer and finally interpretation of the output signal. The forward 

problem deals with the input transducer, the energy/defect interaction and the output 

signal, while the inversion process interprets the output signal as it carries all the 

information relating to the defect. The size, shape and location of the flaw, and 

changes in material properties, affect the output signal. To fully characterize a defect, 

all this information needs to be extracted and decoded from the signal. 

NDE research is concerned with the total picture, from the pliysics of the en­

ergy/defect interaction, to the transducer response characteristics. .A number of NDE 
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techniques are employed to detect, characterize and size defects. These include vi­

sual inspection, radiography, ultrasonics, electromagnetic methods, acoustic emission 

among others. The technique adopted for a particular application depends on the 

material, geometry, type and size of flaw, and other factors. These different tech­

niques can be classified mathematically by the governing partial differential equation 

(PDE) [1, 2, 3], or even by the excitation or energy source frequency. 

In the area of electromagnetic NDE, elliptic PDEs describe flux leakage and 

DCPD methods, parabolic PDE's govern eddy current methods and the .^CPD 

method, and hyperbolic PDE's describe microwave NDE. The ideal forward model in 

electromagnetic NDE should be capable of handling complex geometries and changes 

in the material properties, such as conductivity and permeability, and should predict 

the electric and magnetic fields in the vicinity of defects or inhoinogeueities. This 

model can be achieved by solving the three dimensional (3D) field equations. 

Over the years, mathematical modeling has played a key role in interpreting 

complex experimental signals and providing insight into the physical processes that 

govern all the various NDE techniques [4-8]. A good mathematical model can be 

used as a test bed to duplicate an experimental situation too difficult or expensive 

to replicate in the laboratory. The models can also generate training data sets for 

signal processing and calibration signals needed in NDT instrumentation. In con­

trast to numerical models, analytical approaches to model field/defect interaction or 

transducer responses have been limited to simple defect shapes and sizes. Numerical 

models overcome these limitations and are thus employed extensively in studying 

NDE systems. 

Popular domain, numerical methods utilized to model NDE systems are the finite 
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difference and finite element method (FEM) while the integral methods commonly 

used are the moment method and the boundary element method (BEM). The FEM 

has proven to be superior to the finite difference scheme in accuracy and discretiza­

tion flexibility. Similarly, the BEM is favored over the moment method as the number 

of unknowns in the system is relatively small. Though the FEM is very versatile in 

handling many problems, it may not be the most effective method for all electromag­

netic NDE processes. Therefore it is left to the discretion of the user to choose the 

most suitable technique. In a CAD environment, choosing the optimum modeling 

technique is essential which neccesiates an evaluation of the various aspects of the 

different numerical techniques. 

Scope of the Thesis 

The main thrust of this dissertation is to develop a multiformulation strategy 

involving he FEM and BEM as applied to electromagnetic NDE. This involves devel­

oping and implementing (iuile element, boundary element and hybrid linile-boundary 

element formulation for specific applications and then comparing and contrasting the 

FEM and BEM as applied to electromagnetic NDE. One of the goals is then to identify 

which strategy or method is suitable for a particular application. This dissertation is 

restricted to static and quasi-static electromagnetic NDE applications. The DCPD 

method and the .4CPD metliod are adopted as representative examples to illustrate 

the task of comparing the FEM and BEM in two and three dimensional models. The 

FEM and BEM are complementary techniques, each having its own merits and draw­

backs. To compare these two methods, a number of aspects of these techniques are 

studied to obtain a complete picture. The study discusses the effectiveness of each 
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method, an essential element in the modeling of NDE phenomena. This is due to the 

fact that NDE is unique in its reciuirements for both in understanding the physics of 

the energy/defect interaction and in computing the sensor response. 

Another important issue discussed in this dissertation is modeling implementa-. 

tion considerations, a prominent factor in the users decision process. For example, the 

computer storage and execution time requirements are compared, as such resources 

are crucial to the success of these models. 

Considerable success has been achieved in two dimensional (2D) modeling of 

NDE phenomena. Modeling of steady state eddy currents has been extensively 

treated and reported as part of a practical defect characterization scheme [9-11] while 

moving eddy current coils have also been successfully modeled [12-14]. A number of 

three dimensional models have also been reported in the literature using finite ele­

ments and boundary elements independently [15-20]. The major considerations for a 

good three dimensional model are the establishment of the correct formulation and 

derivation of the quantities of interest such as eddy current densities, flux densities 

and coil impedance from the solution. Many different formulations [21-25] have been 

presented and used, each having its own advantages and disadvantages. Three dimen­

sional modeling is concerned not only with the problem of discretization difficulties, 

but also with the vector nature of the application. There are certain problems where 

neither the FEM or BEM is suitable, but a combination of the two techniques is more 

appropriate. Thus, in the latter part of this dissertation, the salient features of both 

the FEM and BEM are extracted and combined in a new three dimensional hybrid 

formulation for eddy current NDE applications. 

A detailed background study on finite elements and boundary elements pertain­
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ing to low frequency electromagnetic NDE applications is presented in Chapter 2. 

This covers some historical information and the use of these numerical techniques in 

electromagnetics. 

Chapter 3 covers the basic theory for the DCPD and ACPD methods and their, 

applications. A generic finite element formulation of the Helmholtz equation is pre­

sented which covers both these cases. 

The BEM, which is based on the theory of Green's functions, is the numerical 

implementation of a boundary integral equation (BIE). Chapter 4 discusses the signif­

icance of Greens' functions, their importance and derivation. Other integral methods 

such as the moment method and the indirect boundary element method are also 

discussed. Starting from Green's second theorem, the boundary integral equation 

is developed for the DCPD and ACPD methods. The DCPD method is governed 

by Laplace's equation, while the governing equation for the .ACPD method is the 

diffusion equation. The Green's functions for these two specific cases are derived. 

The three dimensional hybrid finite-boundary element method is discussed in 

detail in Chapter 5. This chapter starts with the derivation of the eddy current 

diffusion equation from Maxwell's equations. While alternate formulations for the 

field equation are reviewed, the magnetic vector potential formulation is shown to be 

general and most easy to use. Following this are the derivation of the finite element 

formulation and the boundary integral equation. 

Chapter 6 is dedicated to discussing the results obtained from the two dimen­

sional DCPD and .4CPD modeling of the single edge notch and compact tension 

specimens for fatigue crack characterization. Results from the three dimensional 

model of the compact tension specimen for the DCPD method are also presented. 
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All of these results are compared to experimental, analytical or other numerical data 

cited in the literature in order to validate these models. 

The motivation for studying a two and three dimensional finite element and 

boundary element model is to compare the two methods as applied to electromagnetic. 

NDE. In Chapter 7, the results obtained in Chapter 6 are compared and contrasted. 

Tables are presented showing the computing times, memory requirements and the 

discretization needed to solve those problems. Recommendations are made regarding: 

1. the ease of using these algorithms, and 2. applications where a certain modeling 

technique is preferred over another and 3. the advantages and disadvantages of both 

the FEM and BEM. 

Chapter 8 deals with the results obtained from the feasibility study of the hyljrid 

fini te-boundary element model. The model is applied to an absolute coil scanning 

over an aluminum block. Lift-Off studies, probe impedance measurements and eddy 

current densities are computed for this situation. These results are compared to 

experimental and analytical data to validate the model. 

To conclude this dissertation, Chapter 9 presents some final tiioughts on this 

research and recommendations for future work in the area. 
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CHAPTER 2. NUMERICAL MODELING 

In the evolution and application of numerical techniques a stage of development 

is reached when a method cannot be stretched any further to gain additional benefits. 

At this stage, a thorough study is required to review the method. Demerdash and 

Nehl [26] compared the FEM and the finite difference method (FDM) as applied to 

electrical machines. They concluded that the FEM was superior to FDM in accuracy, 

storage and computer time. Tortschanoff [27] discussed the field equations for eddy 

current problems and compared the FEM and FDM by using different solution tech­

niques to solve the system of equations. Beasley et al. [28] tested the Monte Carlo 

method, FEM, and the charge simulation method for calculating electrostatic fields 

and potential. Krawczyk and Turkowski [29] stressed the necessity for choosing the 

technique that would satisfy the needs of the problem in the most efficient manner. 

Girdinio and Molinari [30] suggested the development of a multifoniiulatioii approach 

to the numerical computation of electromagnetic problems. The idea was to develop 

a single flexible tool or code, capable of managing a wide variety of formulations 

which are of practical interest and at the same time are user friendly. Salon and 

Schneider [31] compared the FEM and BEM in two dimensions l)y applying them 

to electrostatic and eddy current problems at power frequencies. Molinari [32] has 

presented an excellent article on the guidelines for an effective usage and considéra-
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tions for the development of computer codes for CAD analysis. Trowbridge [33, 34] 

discussed the future of electromagnetic computing and the state of the art of domain 

and integral methods as it was in 1990. 

Finite Elements 

Finite element (FE) analysis originated in the structural and civil engineering 

disciplines, where it was utilized to compute stresses and strains in beams with vari­

ous constraints [35]. It is a powerful numerical technique for solving boundary value 

problems (BVP). The procedure involves: 1. functional minimization that satisfies 

the original differential equation, or a weighted residual approach; 2. volume dis­

cretization of the geometry; 3. interpolation of the unknown using specific functions; 

and 4. solving a set of linear equations. The method can inherently handle complex 

shapes, anisotropy and non-linearities and easily incorporates the boundary condi­

tions. A major disadvantage of this method is the large memory requirements due 

to the volume discretization, especially when modeling unbounded problems. It was 

initially adapted by the electrical engineering community to study magnetic fields in 

electrical machines such as motors, transformers and others [36-40]. .Since the gov­

erning PDEs are the same for electromagnetic NDE, the F EM has been successfully 

applied to static and quasi-static NDE phenomena. 

In the static modeling area, Ritchie and Bathe [41] and .A.aronson and Ritchie [42] 

predicted the fatigue crack growth in metaUic specimens via the DCPD method using 

the FEM in 2D. The governing equation solved was Laplace's equation. This model 

has been accepted as a. standard in fracture mechanics. Lecvkage field profile.^ liave 

been predicted by Lord and Hwang [43,44] and Satisli [4-5,46] by modeling Poisson"s 
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equation in 2D. Lord, et al [47] took the process one step further and studied leakage 

field profiles for 3D pipeline structures. There is a wealth of information on the study 

of eddy currents in transformers, motors and other electrical machinery where the 

diffusion equation is solved. Silvester and Chari [36,48] are credited with introducing 

the FEM in studying electric and magnetic field interaction in machines. Lord [49-

51], Palanisamy [14,52,53], and Ida [15,54] utilized the FEM to study electromagnetic 

field interaction in heat exchanger tubing using eddy current NDE. Their research has 

shown great consistency with experimental data for 2D, axisymmetric and 3D models. 

The physics of the remote field eddy current phenomenon was much better understood 

due to the FE models of Lord [55] , Sun [56], Atherton [57] and Hoshikawa [58]. One 

of Lord's key observations was that FE models can simulate electromagnetic NDE 

situations too difficult or expensive to replicate in the laboratory. Thougli pulsed eddy 

current NDE is not popular in industry, attempts have been made by researchers [59] 

to study the transient nature of the phenomenon. Considerable amount of effort has 

been devoted by Rodger [60,61], Shin [62] and others in accounting for the velocity 

induced field term in the diffusion equation. 

A key application of the FEM is to use the technique to design transducers 

[63,64] by observing the magnetic fields. Since the method is versatile, it has the 

capability to model various parameters and study their effects. Various formulations 

have been used to solve both the static and quasi-static problems using the FEM. 

Each formulation has its advantages and disadvantages, and their use in eddy current 

NDE is discussed in a later chapter. 
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Boundary Elements 

Along with FE models, integral methods are being used for the simulation of 

electromagnetic NDE phenomena. The development of integral methods has been 

advanced mainly by researchers in the antenna area. This is due to the fact that 

scattering and radiation problems involve unbounded regions, where integral meth­

ods are ideal techniques. Numerically these equations are solved directly by the 

moment method, or converted to a Fredholm equation and solved by standard itera­

tion solvers, or converted to a boundary integral equation and solved by the boundary 

element method (BEM). The method of moments has been pioneered by Harrington 

[65] for solution of antenna patterns or electromagnetic scattering from conducting 

bodies. Similar to the F EM, the BEM has also been developed l)y researchers in 

the structural and civil engineering field to look at stresses and strains in beams and 

other structures. Brebbia [66] was one of the first researchers to introduce the BEM 

in the early 1970's. The first step for the BEM is the scalar or vector Green's second 

theorem. Identifying the appropriate Green's function and computing the funda­

mental solution is the next step. The surface of the geometry is then discretized, 

the unknown function interpolated using specific functions, and finaHy a linear set 

of equations is solved. A major advantage of this method is that the boundciry at 

infinity need not be modeled since the radiation conditions are satisfied. Since it is 

based on a Green's function, the principle of superposition is applied, thus making 

the method unusable for handling non-linearities. Extensive research is underway at 

various institutions to develop BE algorithms for non-linear and anisotropic problems. 

Simkin [67], Mayergoyz [68] and others capitalized on the benefits of integral 

methods and applied them to solve for niagnetostatic and quasi-static problems in 
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electrical machinery. McWhirter [69] developed computational methods for solving 

2D quasi-static problems by solving the Fredholm equation of the second kind. Lean 

[70-72] used the BEM to solve eddy current problems in 2D, and gave a good overview 

of boundary integral methods in electromagnetics [73]. Trowbridge solved the integral, 

equations for computing eddy currents in both the accelerator and Tokamak magnets 

in 2D and 3D [74]. Rucker and Richter [75-77] formulated a three dimensional code for 

both magnetostatic and eddy current applications, while Tsuboi [78] and ïsuboi and 

Tanaka [79] developed an eddy current code using the BEM. Nicolas [SO] developed 

a surface impedance formulation in conjunction with the BEM to solve both low 

frequency and high frequency 3D eddy current problems. In the field of NDE, Beissner 

[81-83], initially used the indirect integral method to compute fields around a flaw, 

but later used the BEM to calculate the fields around a 3D defect. Dunbar [84] solved 

a volume integral (similar to the indirect method) to obtain fields everywhere in the 

flaw volume and also emphasized the need for a hybrid approach for complicated 

geometries. Kahn [85] used the BEM to study the flaw interaction in 2D crack 

problems. Tsuboi and Misaki [86] computed the 3D field distribution in steel pipes 

using the BEM. All these researchers solve the diffusion equation in the integral form. 

Conolly [87] applied the BEM to predict flaws from the potential computed by the 

ACPD. With numerical methods gaining popularity, there is more research being 

published on the techniques themselves and their applications to electromagnetic 

NDE phenomena. 

There is a continuous effort by various researchers to improve the various aspects 

of the differential and integral techniques to make them more attractive. With parallel 

processing gaining momentum, researchers are experimenting with various computer 
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architectures to implement the FEM and BEM [88-90]. Both Single Instruction 

Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) machines 

with distributed memory are being used to solve these problems. Much research is 

still necessary, however, to answer many unsolved questions which will ultimately, 

benefit the NDE community as modern numerical methods offer the opportunity to 

model more complex and larger geometries and obtain solutions in near real time. 

Hybrid Methods 

A Hybrid method is a combination of two or more techniques applied to solve a 

given problem. Hybrid methods can be used to solve time dependent problems using 

a finite difference scheme to tackle the temporal domain and finite elements for the 

spatial domain. They can also be used to combine analytical methods for the. exte­

rior region with finite elements for the interior region to solve steady state problems. 

This dissertation is concerned with only the hybrid finite-boundary element method 

applied to quasi-static eddy current phenomena. In many practical electromagnetic 

situations, there are homogeneous infinite regions coupled with complicated in homo­

geneous or non-linear regions. Similar to the FE and BE formulations the hybrid 

methods used in the electromagnetic power engineering area seem to have preceded 

those used in the NDE area. 

McDonald and VVexler [91] used the FEM in the interior region of a [jarallel plate 

capacitor and a boundary integral equation for the outer boundary. In their method, 

elements from each region overlap at the interface to avoid any singularity problems, 

but this technique requires more elements for the purpose of linking the two methods. 

Over the decade, D'Angelo [92], Salon and D'Angelo [93], Schneider [94] and Peng 
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and Salon [95] generated a series of algorithms for solving 2D, axisymmetric and 

3D electrostatic and quasi-static problems involving power devices using the FE-BE 

hybrid method. Matsuko [96] solved the eddy current problem in 3D combining 

the FEM and BEM and compared it to analytical methods. In addition to these,, 

traditional FE codes have been used in conjunction with some special modifications 

to solve problems. Bettess [97] used infinite elements, Silvester implemented the 

ballooning [98] approach, and Chari [99] developed an algorithm using an analytical 

solution for the exterior, with FE in the interior, to solve infinite region problems. 

The applications in all these cases were the study of power devices. In the last five 

years, researchers in the NDE community have utilized the benefits of hybrid methods 

to solve various problems. 

Researchers from all over the world involved in numerical analysis of electromag­

netic fields have set up a TEAM workshop [100]. This group has identified fifteen 

standard problems involving static, quasi-static and high frequency fields, linear and 

non-linear material problems. The aim of this workshop is for different groups or 

individuals to use these problems as standards to validate their numerical models. 

These groups meet every year and exchange notes on the various modeling schemes 

used. This has the potential to give a tremendous boost to the numerical modeling 

efforts in electromagnetic NDE because of the involvement of researchers from around 

the globe in trying to generate optimal models. 
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CHAPTER 3. POTENTIAL DROP METHODS: FINITE ELEMENT 

FORMULATION 

Fracture analysis is usually performed only after gathering accurate information 

on the size and shape of a crack. .«Accurate determination, therefore, of crack dimen­

sions is of extreme importance in many critical structural components. In certain 

materials, such as high toughness steels, crack initiation and growth may occur prior 

to failure. Under dynamic loading, fatigue can lead to crack propagation before the 

component fails. Thus, crack monitoring systems are utilized to identify the initiation 

point, crack growth rate and the final size of the crack. 

Potential Drop methods are used widely in the fracture mechanics area to moni­

tor fatigue crack growth and predict crack length. The methods are the DC potential 

drop method (DCPD) and the AC potential drop method (ACPD), which use dc and 

ac excitation, respectively. 

As mentioned in Chapter 1, this dissertation deals with the finite and boundary 

element modeling of the DCPD and ACPD method. This Chapter discusses the the­

ory, analytical modeling techniques reported in the literature, and the finite element 

formulation of the potential drop methods. 
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Potential measurennent 

current 

crack 

Figure 3.1: DCPD measurement 

DCPD Method 

Principle 

In the DCPD method, a constant current is passed through a cracked specimen 

(Figure 3.1), and the electric potential drop which results across the crack is then 

monitored. As the crack length increases, the uncracked cross-sectional area of the 

test piece decreases, causing an increase in current path resistance and a subsequent 

rise in potential. In practice, for a particular geometry, plots are made of the potential 

in the form of ^ as a function of ^ where Uq is the reference potential drop across 

the initial crack, U is the potential drop as the crack length increases, and ^ is the 

crack length to specimen width ratio. These plots are called calibration curves. 

The DCPD method generates calibration curves for various geometries, mate­
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rials and current input. Johnson [101] and others have shown that the calibration 

curves are independent of material properties and thickness, but sensitive to the ge­

ometry of the initial crack. Schwalbe and Hellman [102] and Aronson and Ritchie 

[42] have investigated different configurations of placing input current leads and volt-, 

age monitoring leads. An optimized configuration was agreed upon by undertaking 

experimental measurements [103] and numerical analysis [42]. The input leads de­

termine the uniform current distribution over the cross-section, while the potential 

measuring leads measure very small changes in the potential as the crack grows. 

Three types of experimental specimens are used in fatigue crack growth mon­

itoring ; i) the center-cracked tension specimen (CCT), ii) the single-edge notched 

specimen (SEN) and iii) the compact tension specimen (CT). To ensure that cracking 

occurs predictably, the specimen contains a starter notch (initial crack). The .«Ameri­

can Society for Testing Materials (.-ASTM) has standardized the specimen dimensions 

and crack size. Figure 3.2 shows the SEN and CT specimens with the appropriate 

input and output leads. 

The accuracy of predicting fatigue crack length is vital to the study of fracture 

mechanics. Knott [103,104], Romilly [105] and others have studied the calibration 

techniques of the DCPD method extensively, since the accuracy in predicting crack 

length relies on calibration standards. They developed an electrolyte bath, in the 

shape of a specimen, with models of the defect made of non-conducting material 

inserted into the electrolyte. The voltage drop anywhere across the crack plane was 

measured using a set of insulated probes inserted into the electrolyte. 

The next few sections are devoted to the analytical and numerical modeling of 

the Potential Drop methods. 
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Figure 3.2: Exjierimental specimens for the DCPD measurements i) SEN specimen 
and ii) CT specimen 
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Modeling 

The governing PDE for the DCPD method is Laplace's equation 

= 0 (3.1) 

where V is the steady state voltage in the specimen geometry with a constant current 

in the plane of the geometry. The boundary conditions are K = 0 over the uncracked 

portion and V = ^REFERENCE the current injection point. 

As part of the early modeling work of the DCPD method, Johnson modeled 

the CCT specimen using the theory of conjugate functions to compute the potential 

arising from a crack. The expression for the calibration curves obtained l)y .Johnson 

is universally used for the CCT and SEN specimens and was confirmed by Li and 

Wei [106] and Schwalbe and Hellman. The equation is 

where Uq and Aq denote the initial value of the potential and the crack length, 

2a; is the distance between measurement probe leads, and U is the potential as the 

crack length A increases. The potential distribution due to a crack is similar to 

modeling irrotational, incompressible fluid flow as stated by Clark and Knolt [107]. 

These authors used conformai mapping techniques in the complex domain to study 

the potential distribution of various crack shapes (V-notch, elliptical etc). Orazem 

and Ruch [108] have applied the Schwarz Christoffel transformation in the complex 

domain to determine the potential and to plot the calibration carvcif. They have 

suggested a single-parametric logarithmic equation for the CT specimen which is 

valid for cracks of varying lengths. Two dimensional finite element modeling of 

= cosh 
^0 

_1 [cosh(^)cos(|^)] 

[cosh(^^)cos(-2^)] 
(3.2) 
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the DCPD method has been rejiorted in literature. Aronson and Ritchie used the 

model to optimize the test configurations and measure the probe sensitivity and 

reproducibility. Ritchie and Bathe have provided calibration curves for the SEN and 

CT specimens. All the results were confirmed with experimental data. 

In this dissertation the DCPD method is studied to model an infinite thickness 

specimen (2D) and finite thickness specimen (3D). The results are compared and 

discussed in a later chapter. 

ACPD Method 

Principle 

The operating principle of the ACPD method is similar to thai of the DCPD 

method with one major variation. The difference lies in the fact thai the excitation 

is a uniform alternating current which is carried in only a thin layer of the metal 

surface due to the skin effect phenomenon. Thus the current required to produce a 

given field strength at the surface is much less than with dc excitation, as the effective 

cross-section carrying the current is of a smaller area [109-111]. 

An instrument called the Crack Microgauge was developed for laboratory and 

inservice inspection at the University College, London based on tlie principle of the 

ACPD method. The instrument has a frequency range of 600 Hz to 6 kHz to operate 

on various ferrous and non-ferrous metals. The ACPD method is used for measuring 

fatigue cracks in standard CT and other specimens. Other major applications where 

the technique has been successfully applied are; 1) monitoring surface cracks at 

welded joints of different structures [109], 2) detecting and sizing fatigue cracks in 

threaded connections such as bolts [111], 3) detecting surface cracks underwater in 
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the structure of an offshore oil platform and 4) measurement of thickness of metallic 

coating [113]. 

Modeling 

Maxwell's equations govern electromagnetic fields at all frequencies. Where the 

displacement current can be neglected, the electric field E and the magnetic field 

H can be derived from the low frequency Maxwell-Ampere and Maxwell-Faraday 

equations, which are 

3 B 
V x E  =  ~  ( 3 . 3 )  

V X É  = J  (3.4) 

where B is the magnetic flux density and J  is the current density. .Assuming steady 

state alternating current, using the vector identity V x V x E = V(V - E) — 

and combining equations 3.3 and 3.4, the governing PDE is obtained as 

V~É = ju>iJ,aÊ (3.5) 

or 

= krÉ (3.6) 

where = juicer, w is the angular frequency, fi is the permeability and a is the 

conductivity. For the problem of a one dimensional crack with a uniform depth and 

infinitesimal thickness (Figure 3.3), the E field is solenoidal. Introducing the stream 

function i/j, where 
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and substituting into equation 3.6 gives 

where i and j are the unit vectors in the x and y direction in the cartesian coor-. 

dinate system. By equating each component in the above equation and integrating 

appropriately, the governing equation reduces to 

V-0 = 6^^ (3.8) 

The potential across the probe is given by 

rb ^ 
\ 

In Figure 3.3, the potential is obtained when the probe is away Ironi the crack, 

while V2 is the reading when the probe straddles the crack. The dimensional estimate 

of the crack depth is given by 

j == (3J()) 

with A being the probe width. For a particular geometry and set of calculations the 

probe width is fixed. The nature of the problem for the ACPD method depends on 

the ratio of the crack length {d) to the skin depth {6). When |(/| >> 6, the classical 

skin effect phenomenon occurs in which the current flow is confined to the top thin 

layer of the specimen and is called the thin skin limit. When |f/| «6, the field 

behaves as if a dc current i.s applied and is called the thick skin liin.il[[l'2]. 

Dover et al [109] introduced the theory of the .ACPD method about twelve years 

ago. The authors formulated the problem in terms of the stream function (/-' and 

conjugate function (p with boundary conditions on the crack surface and a surface 
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Figure 3.3: ACPD measurement setup 
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at infinity. The functions 4> and ^ satisfy the Cauchy Riemann conditions with 

<j) satisfying Laplace's equation (Figure 3.4). This is due to the fact that when a 

plane symmetrical crack is unfolded [111], a 2D Laplace problem is produced. The 

theory is called the unfolding theory. Using the unfolding theory and the Schwarz. 

ChristofFel transformation, exact solutions were obtained for circular cracks [109], 

elliptical cracks [114], triangular and rectangular cracks [115]. 

A general solution for arbitrary skin depth was obtained by A'lirshekhar, et 

al.[116]. The potential was computed in terms of Mathieu functions which allow 

for accurate interpretation of surface breaking crack depths from voltage readings 

taken by the instrument. Michael [117] considered higher order terms in the analyt­

ical solution and gave a more accurate expression for the depth of a surface flaw in 

the thin skin limit, which is 

A IT 0 

where is given by equation (3.10). On the other hand, modeling in the thick skin 

limit the depth of the flaw is given by [118] 

The surface distribution of the electromagnetic flelds varies with the parameter nt = 

especially for ferromagnetic materials. Lewis [119] reported how the fields vary 

for different crack shapes in mild steel and aluminum. 

More recently Connolly [87], Mclver [120] and Takaluishi and Miya [121] have 

used numerical methods to characterize cracks. In Connolly's metliod an initial guess 

of the crack shape is made by equation (3.10). The exact potential distribution for 

this estimated crack is determined using the BEM. comparison is made between 
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Figure 3.4; A crack of finite aspect ratio and the unfolded problem [Hi]. 
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the calculated and given potential until the difference is minimized to a prescribed 

level. Mclver modeled the crack using the stream function and the potential as 

independent variables. A Fredholm equation was solved to determine the shape of 

the crack. Takahashi and Miya extended Mclver's work to apply it to magnetic, 

field measurements instead of potential measurements. The authors validated their 

method with experimental results obtained on a steel plate. 

The next section describes the finite element formulation for the Helmholtz equa­

tion. When the frequency term is present (k^ ^ 0), the formulation is valid for the 

ACPD method, and when (k" = 0), the equation reduces to Laplace's equation which 

models the DCPD method. 

Finite Element Formulation 

The classical FEM proceeds by deriving an energy functional of the system 

or by using the weighted residual approach. Next, the entire region is discretized 

into triangular or rectangular subregions over which the unknown function varies 

linearly or quadratically using interpolation functions. These interpolation functions 

are substituted in the functional which is subsequently minimized at each of the nodes 

to obtain an element matrix associated with every element in the region. The element 

matrix is generated b\' performing numerical integration of the shape functions over 

each element. These element matrices and the forcing function vector of each element 

are incorporated into a global stiffness matrix by an appropriate mapping scheme. 

The solution of the matrix equation yields the variable of interest at each node. In 

the next section each of these steps discussed above is outlined briefly. 
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Energy functional 

The energy functional corresponding to the ACPD method governing equation 

(3.8) is 

If we replace /i by ^ by Kand set w = 0 in equation (3.13), the functional F will 

represent that corresponding to Laplace's equation. The Euler form of this equation 

is the governing ecjuation, which ensures that minimizing the functional will give the 

correct solution. 

Discretization 

In 2D, first order three node triangular elements are used while in 3D, S node 

isoparametric block elements are utilized (Figure 3.5). The interpolation functions or 

shape functions for these elements are given in .Appendix A. Criteria for discretization 

are 

• An element cannot cover more than one material. 

• To have a high accuracy for the solution, the discretization must be dense 

where the expected gradient of the variable is larger. The only restriction to 

the number of elements is governed by available computer resources. 

• The conductivity and permeability are constant in an element. 

By computing the variable i/' or I at each of the nodes of the mesh, w or V can be 

calculated at any point within the element. Thus either variable can be represented 
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by 

n 
V = Ni{x ,y , z )v i  

i=l 
n 

i p =  

i=l 

(3.14) 

(3.15) 

where are the shape functions and and are the nodal values at each element 

and n is the total number of nodes for each element in the mesh. To calculate the 

partial derivatives, one operates on the shape functions, 

1=1 

dv " dNi 
lâk = 3  ̂-â&r": 

i=i 

(3.16) 

(3.17) 

where k=x,y,z. 

Finite element equation 

The exact solution of the variable (/> corresponds to the minimum value of the 

energy functional. This is achieved by taking the first variation of the functional with 

respect to ^ and setting it to zero. Thus 

= Iv+  ' I f + ij--"''*""'" (3-is) 

In matrix form 

'I#) « I f ) '  

i 0 0 

0 i 0 

0 0 
M J 

cJv 
'Ux 
d%i 
IJy 
dp 

. 'dz 

+ ju.'ail'6é)dv (3.19) 
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Figure 3.5: Typical 3, 4 and S node elements used in finite elements and boundary 
elements. Figure shows both the local and global elements 
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0 0 

Substituting equations (3.14-3.17) in equation (3.18) and defining 

^1 

•02 

^3 

V'5 

V'6 

^8 

[0] = , [A'] = 0 i 0 

0 0 fj' 

, [ iV] = N-ĵ  Wg -̂ 3 -̂ 4 •̂ •5 iVg 

and AvV = 

dN 
dx 
ajv 
~Uy 
dN 

L W 

the variation equation is now 

6 F j  =  -f jucrêlrp]^(3.20) 

Integrating over the total volume, element by element, the expression for the first 

integral in equation (3.20) is 

[A'][AjV][V']e = (3.21) 

where subscript e stands for element and 

[.s']e -  / [ANf[K][AN]dv (3.22) 
Jv 

and the second integral is 

j^''^à[tp]l [iV]^[.'V][(/']e = J'[/2][(i']t (3.23) 
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where 

[/î] = / auj[N'^[N]dv (3.24) 
Jv 

Thus the contribution from every element is 

6Fy-g = S[ii'^[S]e[i>]e + jS[i]e[R]e[i']e (3.25) 

The total variation is the sum of all the elements in the volume and is given by 

8 F j  = <5[î/']^[5][i/'] + i8[i}^[R\[%l)\ (3.26) 

To minimize the functional, the variation has to be equal to zero. Therefore .setting 

8Fj = 0, one obtains the finite element equation 

= (3.27) 

or 

[GM = [Q] (3.28) 

where [G] is the global stiffness matrix which is sparse, banded, symmetric and diag­

onally dominant, and [i/)] is a vector of the unknown potential at all the nodes in the 

volume. The right hand side [Q] is a vector of boundary conditions, which is zero ev­

erywhere except at the current injection points. To minimize the computer memory 

usage, only the diagonal and upper banded portion of the global matrix is stored in 

2D. In 3D, the diagonal and non-zero elements of the upper banded portion of the 

stiffness matrix is stored. To solve this set of linear equations, a standard Gaussian 

elimination technique is used for the 2D case, while in 3D. an iterative incomplete 

Cholesky conjugate gradient (ICCG) algorithm is used. 

The next chapter discusses Green's functions and derives the boundary integral 

ecjuation for the potential drop methods. 
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CHAPTER 4. POTENTIAL DROP METHODS : BOUNDARY 

ELEMENT FORMULATION 

The general concept of integral methods to solve PDE's starts when the original 

problem, which is most often expressed in differential form, is cast into integral form. 

The integral equation is normally defined over the boundary of the domain, and 

therefore all the variables are defined as boundary variables. The Green's function 

approach is then to solve a given PDE with a closed function representing the solution. 

Introduction of the Green's function is both the strength and the weakness of integral 

methods. 

The boundary integral equation (BIE) is obtained from Green's second theorem 

and the corresponding Green's function. The boundary element method is the nu­

merical approach used in this dissertation to solve the BIE. In this chapter a brief 

discussion of Green's functions; their significance and derivation, and the develop­

ment of the BIE for the DCPD and ACPD method are presented. 

Green's Functions 

Green's functions are defined as the solution to a PDE using a unit source as the 

forcing function. In other words, the Green's function is a solution of a system which 

is homogeneous everywhere except at one point. The solution to the actual forcing 
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function is then the superposition of the solution obtained with the unit source at 

the different locations representing the actual source distribution. Thus, the Green's 

function is the impulse response of a system [122]. The Green's function for a given 

problem can be expressed as a finite explicit function, or as an infinite series, or even, 

in integral form. All these solutions, although different in form yield the same result. 

In electrical engineering, the Green's function concept is used very often without 

ever mentioning it. A classic example is the potential measured at a point r|, due 

to a unit point charge placed at the origin. In electrostatics the electric field is 

irrotational, and if there are no surface charges present, the electric potential V is 

governed by Laplace's equation. From Coloumb's law, the electric field is given as 

then the potential is obtained from the relation 

V = - j Ê - dl 

Thus 

,/ = - ^ 
Joo 47re7— 

which gives V = This is the Green's function of the system. Thus, the Green's 

function of this system is the same as the potential due to a unit point charge. 

•Another point to be clarified at this stage is that the temporal impulse response of a 

system is normally the response of the system at time t due to a unit source applied 

at time /. The Green's function is normally the response of the system at a point in 

space due to a spatial impulse applied at another point in space. Thus the impulse 
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response is in the temporal domain, while the Green's function as described here is 

in the spatial domain. 

Typical properties of Green's functions are: 

• the solution of the equation is 

where L is the Sturm Liouville operator [123], G(r,s) is the two point Green's 

function, S(s) is the Dirac delta function (unit source) and /•and are the field 

and the source point in space for the system, respectively. .Appendix B gives 

the properties of the Dirac delta function. 

• it has continuous first and second derivatives except at r = s 

• it satisfies the boundary conditions of the problem 

• in general they are symmetric in nature = G'(s.?-)) 

Thus, to solve an inhomogeneous equation 

(4.1) 

L ( i c }  =  /  (4.2) 

where L is the second order Sturm-Liouville operator 

L ( u )  =  f u '  +  r u  —  q u  (4.3) 

the solution for u can be given by 

(4.4) 
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where f(s) is some known source distribution in the system. For linear operators with 

simple geometries the Green's function is well documented and so the solution is easily 

computable. Generating the Green's function in the case of complex geometries is 

tedious. Since the Green's function solution is based on the principle of superposition,, 

it is not readily available for non-linear operators. The next section develops the BIE 

for the Potential Drop methods. 

Boundary Integral Equation 

The governing PDE for the ACPD method is the scalar Helmholtz equation 

given by 

V-0 = k-tP (4.5) 

where = jujfj.cr, while for the DCPD method the governing PDE is 

V-V = 0 (4.6) 

The BIE for Helmholtz and Laplace's equation is identical except for the different 

Green's function used in the formulation. 

Green's second theorem is the starting point for the BIE; 

to o r dF dG 
/ (G'V-F - F V ~ G ) d v  = / (6V - (4.7) 

Jv Js  an  on  

where F and G are functions continuous in the domain v including the boundary or 

surface s (Figure 4.1) and n is the normal at any point on the surface. The next step 

is to let G satisfy 

== 6(j;--,f) (4.8) 
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X  is the field point and ^ is the source point and 6 { x  — Q is the Dirac delta function. 

From the previous discussion on Green's functions, one can say that G is the Green's 

function for the governing PDE. In 2D, G(x, (f) is 

(4.9) 

Gix,0 = j-KQ{kr) (4.10) 

Kq is the modified Bessel function of the second kind and 

r  = — ifl)" + ( x o  —  ^2)" + — fg)". In 3D, the Green's function for Laplace's 

equation is 

G'(z,f) = -r^ (4.11) 
47r7-

The Green's function is derived in Appendix C for the scalar Helmholtz equation 

and shows that V~G' — 0 for >• ^ 0. Thus, letting F be V or i/", and substituting the 

corresponding PDE in equation (4.7) results in the equations, 

= ^(G'(z,f)^(z) - ̂ (z)^(z,f))(/6 (4.12) 

0 = %(G(z,f)^(z) - y(z)^(z,f))(Z6, (4.13) 

for the Helmholtz and Laplace's equation respectively. These integral equations are 

valid at every single point in the domain v and so these must be integrable. Since 

G'(f, if) needs to be a continuous function in the domain, but is a .singular function at 

X = if, this singularity needs to be eliminated. To illustrate the process of removing 

the singularity, the following section will discu.ss this issue using the 2D Laplace's 

equation. 
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domain v 

normal n 

surface S 

Figure 4.1: Typical domain with volume v and surface 5 

Singularity removal [124] 

The Green's function is a two point kernel function, and when x = ^ the function 

blows up or is singular. The point (f can be located inside the domain, on the boundary 

of the domain, or outside the domain. Each of these cases is studied separately. Figure 

4.2 shows the domain and the three cases where the field point is located. 

Case I: Point ^ is inside the domain v: 

Since G{X,[)  = — r then 

fJO - 1 _ 
(4.14) 

where e is the unit vector amongst the spatial coordinate directions and n is the 

usual unit normal to the surface at a point. For all the cases the right hand side of 
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equation (4.13) can be written as 

(ï.ç,)^ (4.15) 

The contributions due to 5"^ and Sg cancel as they are oriented in opposite directions, 

as e —)• 0. Consider the contributions due to Se, the integrand of 4.15 is, 

(G(î,ô|^(î) - l/(x)|£(x,f))<is (4.16) 

Substituting for G{x,^) = ln()'), the first integral can be written as 

(4.17) 
r -dV 1 t dV 

As e —> 0, eln(€) —^ 0 and so 

lini i ,  G { x , 0 ^ { x ) d s  =  0 (4.18) 
e—>0 Joe an 

The second integral is 

'e 

Since V(â;) is continuous near x = ̂  and setting e • ?T = — 1, the integral is 

Thus the singular integral picks out the value of the potential function at the source 

point (i^). 

Case II: Point ^ is on the boundary or the surface: 

/ l/(f)^(j;,f)(/6 = - r y(.i;):^e . 776^/6; (4.21) 
Jbc On vO lire 

L =C-à-/-

lim / l/(z)^(z,f)6(^g = y(f) (4.20) 
t—>0"'O£ on 
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Case I Case II Case III 

S e  

4 inside the domain 4 o" the surface ^ outside the domain 

Figure 4.2; Singular integration showing Ç inside the domain, on the surface of the 
domain and outside the domain 

Thus, in the hmit, the integral is 

Case III: Point Ç is outside the domain, and therefore the contribution from both 

integrals is zero. 

Thus, after removing the singularity at the point x = the boundary integral  

equation is 

(4.23) 

where C{Ç) = 1,0.5,0 depending on the location of point To .solve this BIE, one 

needs to know either the potential or its normal derivative, as boundary conditions, 

at all points on the boundary. 

There are many different techniques to solve the BIE (4.23). The prominent 

methods are the method of moments, indirect boundary element method and the 
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direct boundary element method. A brief discussion of the techniques follows. 

Boundary Integral Techniques 

Method of moments [65] 

This technique is used frequently in the solution of high frequency electromag­

netic problems including antenna design, scattering due to an incident electromag­

netic wave and others. The general procedure is outlined below: 

Consider the inhomogeneous equation (4.2), where u is unknown and / is known, u 

is expanded in a series form using some basis functions kn in the domain, as 

u = Y^ankn (4.24) 
n 

where an are constants. Substituting in equation (4.2) yields 

Y,<^nL{kn) = f (4.25) 
n 

The next step is to define a set of weighting functions lum and take the inner product 

of equation (4.25) with every lum- The result is 

^Q7i < wni .Lkn >=< wm^ f  > m = 0,1,.. (4.26) 
n 

This gives rise to a linear set of equations and in matrix form it is. 

[  hnn ] ] =  [ fm ] (4.27) 

The final solution is then given by 

[ ft ] = [kn ][ ] (4-28) 

The accuracy of the solution depends on the choice of kn and wm-
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Indirect boundary element method [124] 

In this method the solution K(^) in equation (4.23) is approximated by 

y(f)= / G(z, (4.29) 
7 

where 7 is either the surface S enclosing the domain or another surface just outside 

S. The function cr{x) is an unknown distribution or density function in the domain 

which is determined by enforcing the boundary conditions of the problem. The other 

One advantage of this method is that if the surface 7 is chosen to lie just outside the 

domain, the singularity problem is avoided and a closed form solution is obtained. 

The major  disadvantage l ies  in  the computat ion of  the  correct  densi ty  funct ion cr(x)  

for a given problem, causing many researchers to avoid this method. 

Direct boundary element method [124] 

This is the approach used in this dissertation for solving the BIE for the DCPD 

and ACPD NDE methods, and later for the eddy current NDE problem. 

The numerical procedure for this approach, similar to the FEM. is summarized 

below: 

• The domain surface is discretized into a number of line segments in 2D or 

surfaces in 3D. Each line segment has three nodes, while the surfaces are 4 

node quadrilaterals. The discretization is varied depending on the expected 

solution gradient. 

term in equation (4.23) is given by 

(4.30) 
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Along each element the potential and its normal derivative are assumed to vary 

linearly using standard shape functions. These shape functions are given in 

Appendix A. 

Substituting these shape functions into the BIE gives, 

nelements  .  ay,  
C({)V(£")= E ij (4.31) 

2 = 1 

In 2D the Green's function contains a weak singularity (9(ln( /•)) while its normal 

derivative has a strong singularity 0( as iT —> if*. Due to these singularities, 

the discretized BIE must be interpreted as an improper Gauchy integral. In 

3D the strong singularity is 0( 4t). For both cases, the strong singularity is 
r-

analytically removed and then solved numerically. 

A global matrix equation is obtained, 

i r n v } - [ p | ( ^ }  =  { 0 }  ( 4 . 3 2 )  

where {F} and are the unknowns at every node point ou the domain 

boundary. These coefHcient matrices [T] and [P] are non-symmetric and fully 

populated. 

After incorporating the appropriate boundary conditions, tlie set of linear equa­

tion is solved using Gaussian elimination. 



www.manaraa.com

42 

CHAPTER 5. EDDY CURRENT NDE: HYBRID 

FINITE-BOUNDARY ELEMENT FORMULATION 

The previous two chapters describe the FEM and the BEA'I as applied to the 

potential drop methods. The governing equations for the DCPD and the ACPD 

method are Laplace's, and the scalar Helmholtz equation respectively. Eddy current 

methods are governed by the diffusion equation and are quasi-static in nature. 

The FEM is a domain method, needs a volume discretization, and handles non-

linearities and awkward geometries easily. On the other hand, the BEM is an integral 

method and requires only surface or boundary discretization. A major feature of the 

BEM is it's ease of handling infinite boundaries and the inherent 3D nature of its 

formulation and application. 

These two methods have entirely different features, but complement each other, 

and can be combined to exploit their individual merits. .A typical geometry for eddy 

current NDE is shown in Figure 5.1. The three regions that need to be considered are: 

1) probe, 2) conducting specimen, and 3) free space region extending to infinity. It is 

assumed that eddy currents in the probe are neglected. Using only the FEM. all the 

three region volumes need to be discretized, a condition that puts heavy demands on 

the computation resources. If the BEM is used exclusively, then only the surface of 

the probe and conducting region need to be discretized. Since radicitioii conditions are 
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satisfied at infinity, the free space region need not be modeled. In the hybrid method, 

the probe and specimen volume are discretized using finite elements, while the surface 

of the probe and specimen are discretized using boundary elements. Thus, the effect 

of the free space region is embedded in the boundary element formulation. It must, 

be noted that the surface nodes of both the discretizations used in the computations 

in this dissertation are identical. 

This chapter describes a hybrid finite-boundary element formulation for solving 

the 3D eddy current diffusion equation. The governing equations for eddy current 

NDE are developed from first principles. Then a background study on various formu­

lations to solve the eddy current problem using finite elements is briefly described. 

Governing Equation 

The low frequency Maxwell's equations for electromagnetic fields where the dis­

placement current can be neglected are 

(5.1) 

V X  fl = Js + Jinductd 

V • B = 0 

(5.2) 

(5.3) 

V  -  D  =  p y  (5.4) 

The magnetic vector potential (MVP) A is defined as 

B = V X  A 

The constitutive relations for a linear, homogeneou.s, i.so tropic medium arc 

J = aE (Ô.G) 



www.manaraa.com

44 

Free space 
O = 0 

probe 

a=0 

conducting specimen 

a> 0 

infinity 

Figure 5.1: Typical eddy current geometry showing the probe, conducting specimen 
and free space region to infinity 
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B = fiH (5.7) 

D = eÊ (5.8) 

Substituting equation (5.5) in (5.1) yields 

V x ( i + ^ ) = 0  ( 5 . 9 )  

Using the vector identity V x V5' = 0 for any scalar S, the electric field intensity can 

be defined as 

- dÂ 
E = '— - Vé 

dt 

where 4> is the electric scalar potential. Finally substituting equations (5.9), (5.5) and 

(5.7) in (5.2), the governing equations for the eddy current phenomenon is obtained 

as, 

V X —V X .4 + cr^ + crVçi) = (5.10) 

Taking the divergence of the above equation while maintaining current continuity 

• ^induced = 0, <p must satisfy 

V • (7(^ + V<p) = 0 (5.11) 

Assuming steady state alternating current, the governing PDE's are 

X —^ X /i -f- JCujA. 0 — -Js 

V • cr(juÂ + Vç) = 0 (5.12) 

.Assuming a homogeneous medium, and substituting the vector identity V x V x .4 = 

V(V • i4) — V^A, the governing PDE's can be written as 

— V~.4 + V(V • .4) + jiOficrA + fxaVo = J 

S/ • aijuA+Vcp) = 0 (5.13) 
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The divergence of A or the gauge condition is arbitrarily chosen. This is an important 

parameter and so the next paragraph discusses possible choices of V • A. 

The gauge condition 

According to Helmholtz's theorem, any vector is uniquely defined if its curl and 

divergence are specified. The curl of A is defined, while it's divergence is arbitrary. 

Possible choices are: 

•  V - A  =  0  

The first condition is called the Lorentz  ( jauge.  If the displacement current density is 

not neglected, the governing PDE can be written as 

V X V X A = + (5.14) 

Substituting equations (.5.8) and (5.10) in (5.14) yields 

V(V . A + (5.15) 
O t  ( J t ~  

Substituting the Lorentz  gauge in (5.15) the governing PDE assumes tlie form of 

V""A — fie n — —liJ (5.16) 
at- '  

This is a simplified wave equation. Thus for high frequency applications where the 

wave phenomenon is considered, the Lorentz gauge is ideal because it uncouples the 

two potentials from the wave equations. Bryant et al. [125] and others have dis­

cussed the Lorentz gunge for eddy current prol)lems and the uniqueness of A in these 

formulations. 
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The second condition is called the Coloumb gauge and is implemented in this 

dissertation. Assuming a homogeneous medium and enforcing the Coloumb gauge 

the governing PDE can be written as 

v '^A — jufxcrA — n<7V(j> = —fiJs  (5.17) 

This is a vector Poisson's equation. 

Since the FEM has no restriction in modeling non-linear materials, the curl-curl 

equation (5.12) is maintained as the governing equation. Thus to insure uniqueness an 

additional term ^ V-^is added. When the governing equations are discretized to form 

the FEM global matrix, the scalar potential term makes the matrix non-symmetric 
.-J I / 

[21]. To restore symmetry, Biro and Preis [23] and Rodger [21] have defined (i> = 

Thus with this substitution in equation (5.12), the actual governing equation for the 

FEM in this dissertation can be stated as 

X—V X  A ——V • Â  +jiJcrA +jujaVcj)^  = Js 
y.  f i  

V  • cr{ jùjÂ + = 0 (5.IS) 

A number of researchers have discussed the Coloumb gauge in detail. Chari et al 

[5] have proven that for 3D magnetostatic problems, adoption of the Coloumb gauge 

is mandatory. Morisue [126] states that the A is unique by using the Coloumb gauge 

in conjunction with certain boundary conditions for the eddy current problem. A 

similar conclusions is made by Hasebe and Kano [127] for the magnetostatic case. 

The BEM is used to model only the free space region, and so the governing 

equation is 

V x V x . 4  =  0  ( 5 . 1 9 )  
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There are many different formulations for solving the eddy current problem. A 

brief discussion on these formulations is presented in the next few sections. 

Alternate Formulations 

The introduction of the magnetic vector potential is but one choice of the avail­

able potential functions that can be used. The use of the electric vector potential, 

scalar potential, stream functions and others offer a variety of formulations. Formu­

l a t i o n s  w h i c h  s o l v e  f o r  t h e  e l e c t r i c  f i e l d  i n t e n s i t y  [ E )  o r  m a g n e t i c  f i e l d  i n t e n s i t y  { H )  

directly are also used. 

Potential function formulation 

The motivation to use potential functions to represent the electric and magnetic 

fields is in the ease of applying boundary conditions and in the reduction of dependent 

variables, which reduce the computational effort [15]. For example, in the solution 

of the 2D ACPD method, the calculation of the x and y components of the E field 

uniquely solves the problem everywhere. Introducing the scalar potential o . one 

needs to solve a single scalar quantity, from which E can be computed. 

In eddy current problems the current distribution cannot be restricted to one 

or two dimensions in space, or cannot be easily calculated analytically. The scalar 

potential is unable to specify current distributions and thus needs to be coupled with 

a  v e c t o r  p o t e n t i a l  o r  a  p r i m a r y  f i e l d  q u a n t i t y  { E  o r  H ) .  
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Magnetic vector potential À 

The use of the MVP to solve eddy current problems is a very popular approach. 

The equations in (5.IS) are coupled, making it necessary to solve for the three compo­

nents of A and the scalar potential 4>. Publications by S arma [131], Trowbridge [34], 

Rodger [21] and Biro and Preis [23] have discussed the various formulations using the 

MVP. 

Demerdash [132], Biddlecombe et al [128], Chari et al [5] and others proposed 

the use of the MVP both in conductors and free space as well as the electric scalar 

potential (j) in conductors. Demerdash used the curl-curl equation without a gauge 

condition, Chari discretized the vector Poisson's equation while Biddlecombe pro­

posed that using isoparametric elements with the curl curl equation guarantees the 

uniqueness of A. 

Later Emson and Simkin [129], Rodger and Eastham [17] and others proposed the 

elimination of (j) in conductors and the introduction of the magnetic scalar potential 

Q in the homogeneous free space region. This leads to 

where A* is the modified vector potential. This reduces the governing equation to 

V X -V X ,4* + juiaA* = J (5.21) 

This has been successfully implemented by a number of researchers [15,17], but it has 

some weaknesses. Equation (5.20) implies V • a A* = 0 which produces a continuity 

condition 

ai .4* • n = cr.2 A* • n (5.22) 
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for two conductors with different conductivities as compared to 

Â\-n = Âl'n (5.23) 

from equation (5.21). Also for regions with ct = 0, Emson and Simkin's formulation 

gives rise to a number of difficulties during its implementation [21,23]. 

In the proposed hybrid finite-boundary element model, the BEM mesh is super­

imposed on the FEM mesh and so the electric scalar potential is essential to maintain 

the continuity between regions of different conductivities. 

Electric vector potential T 

By defining J = V x T ,  where T is the electric vector potential, and letting 

H = T — VQ, the governing PDE can be stated as 

1 BT 80.  
Vx(-Vxf) + /!^-/;V.^ = 0 (Ô.24) 

V • (/iVQ) = V • (/iT) (5.25) 

where fl is obtained from the second equation. By suitably defining the divergence 

of T, one obtains the solution of the above equations. A problem with this technique 

is that cancellation errors occur in calculating the magnetic field since T and Vn 

could be of similar magnitude in highly permeable materials. This method is called 

the T — n method. 

Magnetic scalar potential Q 

In free space, curl of H is zero and so the H field can be written as the gradient 

of a magnetic scalar potential Q 

fl = -vn (5.26) 
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For regions containing current distributions, the field is written as a sum of two parts, 

É = He + Hm (5.27) 

where He is due to the currents in the region and Hm is due to the rest of the 

field. Thus Hm = —Vfi. Since He cannot be represented by a scalar potential, it is 

calculated analytically using the Biot-Savart law. This method has been implemented 

by Trowbridge [74] and others. The approach is similar to the T — ÇI method and 

has similar cancellation problems when calculating the magnetic flux density. 

With most electromagnetic problems, researchers are interested in knowing the 

electric and magnetic field distributions in the material. This is accomplished by 

solving Maxwell's equation using potential functions and then computing the field 

quantity. Ferrari [24] and others show that certain problems with simple boundary 

and interface conditions can be solved by directly solving Maxwell's equations for the 

É and H fields. 

Nakata, et al [130] have discretized the various eddy current formulations dis­

cussed above and compared the accuracy, computer storage and cpii time for each 

method. They applied the formulations to the Bath cube problem [100] and compared 

the magnetic flux density at certain points in the material. 

The MVP, although not the easiest and most economical to implement, is gen­

eral and applicable to most situations. The MVP is essential to describe the current 

distribution and the scalar potential is necessary to maintain continuity among dif­

ferent conducting regions. This is the reason for the magnetic vector potential and 

electric scalar potential being used in this dissertation. 

The next section describes the development of the finite element and buundary 

element equations for the eddy current problem 
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Formulation 

Finite element 

The procedure for generating the finite element equation is similar to that de­

scribed in Chapter 3. Instead of using the energy functional as the starting point, 

the Galerkin weighted residual approach is used. 

The governing equations are 

There are four unknowns to be determined; three components of .4 and the scalar 

Using the Galerkin weighted residual method, with the weighting fuuclioas being the 

shape function, the equations are 

The volume v consists of the conducting specimen and prolje coil, while the surface 

s is the surface enclosing this volume. Using the vector identities 

V X ( çia) = Vçj X a + oV x a 

V  X — ' V  X  À —  V i  —  V  •  A )  +  j u j c r A  +  j u j a W ç '  —  J ;  
H fx  

V  • <7{ju>Â + ju;V(p')  = 0 

potential d>'. In further derivations, the prime on é' will be dropped for simplicity. 

1 - - r  
V( —V • A)  +  jujcrA + jwcrV4>)(lv  = j 

fJ.  Jc  

f  N, iS/  • a{ jLoÂ + ju:V4>)dv = 0 

©Vip = V((j)i/j) — li'V© 

V • ( éâ)  = a • Vcp + 9V •  a  (5.30) 
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and Gauss's theorem, equations in (5.29) can be rewrittten as 

J ^—VN^ X —V X A4- VA^j—V • A + jc^crN^A + ju>crN^V<^'j dv 

— f  N{{n X —V X A)ds — [  Xsdv = 0 (5.31) 
Js  n  Jv 

— J {jujaA +jujcrV(f))  • 'VNj^dv + J( jucrN^A + jojaN^V<f>) • nds  = 0 (5.32) 

This is the finite element ecjuation to be discretized and integrated over the specified 

domain. The surface integral in equation (5.31) is the linking term between the FEM 

and the BEM. 

Isoparametric discretization 

Eight node hexahedral linear elements are used for the volume discretization. 

The shape functions in local coordinates are given in Appendix A. The global'coor­

dinates are mapped by the shape functions 

S 
a; = ^ Ni{r,s,t}xj^ (5.33) 

2 = 1 

S 
y = ^ Ni(r,sJ)yi (5.34) 

i=l 

8 
~ = Ni(r,sJ)z^ (5.35) 

i=l  

and similarly the potential functions A and ( j )  are expressed as 

S 
Ax{x,y ,z)  -  ^ N.i{ i \s , t )A^i  (5.36) 

i=l  

8 
Ay[x,y ,z)  -  Ni{i \s , t )Ayi  (5.37) 

?'=1 
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8 
M{x,y,z)  = Ni{r ,s , t )A^i  

i=l 

8 
<f){x,y ,z)  = Y1 Ni{r ,s , t}<f> 

i=l  

(5.38) 

(5.39) 

These approximations are introduced into the integral equations. However these 

equations contain the derivatives of the potential functions which must be evaluated 

in terms of the global coordinates. 

dA k  — 
S 

dx 

_ 

lA • 
ai- a:* 

= E 
2 = 1 

dy '  

^"^6 __ ^ ,1 . k = x,y .  

(5.40) 

(5.41) 

(5.42) 

As the shape functions are derived in local coordinates, their derivatives are deter­

mined in these coordinates by using the chain rule 

dNj _  dNi  dx dNi  dy dNi  dz  

dr  dx dr  dy Ôr dz  dr  

dNi  _  dN-i  dx  dNi  dy dNj  dz  

ds  dx ds  9?/  05 dz  ds  

di \ ' j  _  dNi  dx d l \  dy dNj  dz  

dt  dx  dt  dy dt  dz  dt  

These equations can be written in matrix form as 

(5.43) 

r aN,: ' dx dy dz  '  
dr  Tfr  IF-

ayV,; dx dj i  
ds  di f  ds  ds  

.  dt  .  
dx dy dz  

.  dt  .  .  Ut W Uf.  .  

' ^ ' " ̂  • 

dx dx 

dy 
= [-^l 

IJy  
dN; 
IJy 
dN; 

.  dz  .  

where [.J] is the .Jacobian ol' the transformation. The global derivatives can be derived 
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by 

• ̂  • 
dx 

r dNi 1 

~dy 
= [ J ] - ^  O N j  

-d 

. - 9 # .  
am 

L V. 

Similarly the volume can be written as 

dv = dxdydz = \J\drdsdt  

where |J| is the determinant of the Jacobian. 

To evaluate the elemental contributions to the final global form, equations (5.31 

and 5.32) must be integrated over the element. Since isoparametric elements are used, 

all the quantities are majjped into the local coordinate system. This transformation 

simplifies the integration limits, but due to the complex shapes involved numerical 

integration is performed. A Gauss quadrature method is used where the integrations 

are reduced to 

/-I J-i j-i (5.44) 

where f '  is the transformed integrand. Appendix D discusses the process of numerical 

integration. 

Global matrix 

Equations (5.31 and 5.32) are integrated over the entire domain to form the final 

matrix. Instead of performing this process over the entire region, it is convenient to 

integrate it over each element and then sum all the individual contributions. This 
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gives 4x7V simultaneous linear equations or a 4#x AN global coefficient matrix where 

N is the total number of nodes in the domain. Thus at each node, the variables to 

be determined are the 3 components of A and the scalar potential (j>. Eight node 

linear elements are used for discretization which yield 32 equations. The size of the. 

element matrix is 32 x 32. Substituting the shape functions and their derivatives into 

equation (5.31) the following submatrix is obtained for every node in the element. 

%-3,4i-3 0 0 0 

0 6 42-2,42-2 0 0 

0 0 •^42 — 1,42 — 1 0 

0 0 0 0 

^4z-3,4z-3 0 0 ^42-3,42 Q42-3 

0 %-2,4i-2 0 -^42-2,42 <542-2 

0 0 •^4x—1,4^— 1 ^42 — 1,42 • '^z i  Qi i - l  

-^42,4*'—3 %i,4i-2 •^4^,4^—1 •^42,42 <P 0 

where the coefficients are 

%-2,4î-2 = %-3,4i-3 (5-46) 

%i-l,4i-l = %-3,4?;-3 

%i-3,4i-3 = J^N^Njdxdydz (5.48) 

%-2,4i-2 = %-3,4z-3 

%-l,4i-l = %-3,4i-3 (5.'^0) 
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r ÔNa 
%,4*-3 = (5.51) 

^4i ,4i-2 = (5.52) 

f avv,. 
•^4i,4i-l = j^Ni-^dxdydz (5.53). 

%-3,4i = ^4% ,42-3 (5.54) 

%-2,4z = RUAi-2 (5.55) 

&%-l,4* = ^4%,4%-l (5.56) 

Q4j_3 = J^JxNidxdyd:: (5.58) 

Q4i—2 = j^JyNidxdydz (5.59) 

Q^i—l = J  JzN^dxdydz (5.60) 

In addition to the volume integrals, two surface integrals are involved in equation 

(5.32). They are added to equations (5.51 to 5.53) as follows: 

^4i-3,4z-3 = %-3,42-3 " ̂  N^NjUxds (5.61) 

%i-2,4z-2 = %-2,4i-2 " % (5 62) 

%i-l,4î-l = %-l,4i-l - ̂  N^NjUrds (5.63) 

/. avV,- gAT,- gvV,-
%,4i = %,4i - (5 64) 

Here, n is the unit normal vector, and nx,  n-y and nz are the components of the unit 

normal in the x,y and z directions respectively. 
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The surface integral of equation (5.31), which is the linking term, is treated 

s e p a r a t e l y .  T h e  i n t e g r a n d  n  x  x  A  i s  c o n s i d e r e d  a s  a  s e c o n d a r y  v a r i a b l e  È .  

Thus, this integral gives a nodal matrix of the form, 

%-3,4z-3 0 0 

0 %-2,4z-2 0 

0 0 

where, 

%-3,42-3 = % 

%-2,4z-2 = % ̂ ^iNjds 

24i-1,42-1 

(5.65) 

(5.66) 

(5.6T) 

In this formulation, the conductivity is assumed to be spatially independent 

while the permeability is allowed spatial variation. Each coefficient (equations (5.45-

5.67)) for each node in the element is numerically integrated using Gauss quadrature 

and summed into a complex elemental matrix equation of the form 

{[S]+ju:a[R]}A+[T]{È} = {Q} (5.68) 

[S] and [R] are the real and imaginary part of the 32 x 32 elemental matrix. [T] is a 

24 X 24 matrix which links the two formulations, {/I} and {Q j are the 32 x 1 vectors 

of the unknown and source terms respectively, and {5} is the 24 x 1 vector of the 

secondary variable wliich is later eliminated. 

The elemental matrices are summed over the total number of elements to provide 

a global system of 4 x N simultaneous linear system of algebraic equations. 

(5.60) 
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[G] is the global coefficient matrix which is sparse, banded and diagonally domi­

nant. Skyline storage [140] gives a compact form to store this matrix, which reduces 

the storage requirements tremendously. Since this matrix equation has to be cou­

pled with the boundary element equation, it is discussed after the boundary element 

formulation. 

The next section discusses the boundary element formulation. 

Boundary element 

The boundary integral is apphed to the free space around the probe and con­

ducting specimen. Thus the governing equation is 

V X —V X A = 0 

V X V X A = 0 (5.70) 

with the Coloumb gauge V • A = 0. 

Green's second identity for vectors is 

In 3D, the Green's function that satisfies equation (5.70) is 

4%T 

while the fundamental solution is 
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where à is an arbitrary unit vector, and r  = y{x '  — x) '^  + {y '  — t/ )^  + [z '  — 2)-. 

Identifying P = A and Q = and applying equation (5.70) and Gauss's theorem, 

equation (5.71) is transformed as [138,139]; 

-à  f {A-n)V{-^)ds  = à-  [  V(^)  x{Âxn)ds-à - [  (Yj l j i )  x  nds 
Js  4%T Js  47rr '  Js  47rr  

Since à is an arbitrary unit vector, it is eliminated to obtain, 

0 = /(A • 7i)V(-^)(/s + / V(-^) X (A X n)ds -  [ ^  ^ "dg (5.72) 
Js 47rr' Js Airr' ' Js Attv 

This integral equation is valid for regions where the functions are continuous and 

possesses continuous first and second derivatives. Since Q has a singularity at r = 0, 

this point has to be excluded. 

Singularity removal 

About the point (x \  y\z^)  a small sphere of surface jg and radius ; ̂  is circum­

s c r i b e d  s u c h  t h a t  — >  0 .  N o w  t h e  d o m a i n  v o l u m e  i s  b o u n d e d  b y  s  =  +  S f  

Over Se, ^(5^) = ^(%). Thus equation (5.69) over can be written as 

1 ^ 1 /* 
0 = / rQ(A • n)dse H 9 / rn x (A x n)dse 

47rr|' Jse 47rrj' • 'Se 

+T^ / (V X .4) X ndsc (5.73) 
47r7'2 Jsc  

tq is the unit vector in the direction of r .  Using various identities and assuming 

7 Q M = 1, ? Q X M = 0 and in the limit as —> 0, the above equation is reduced to 

4?n'2 
A dsf 
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In the limit as rj —>• 0, ds^ = 47rrj, thus 

f  =A{x' ,y ' , z ' )  (5.74) 
J S t  

Thus in the limit analysis, the value of the function at the source point is obtained. 

The boundary integral equation (BIE) is then 

A{x' ,y ' , z ' )  = — [(A • n)V{-^)ds  + [  V(-^)  x i i  x  Ads 
Js 47rr Js 47rr 

+ f (5.75) 
Js  4X7' 

The third integral on the right hand side is the linking term. This BIE can be written 

in a more compact form as 

A{x' ,  y  , z ' )  = — /  TAds-\-  f  ÛBds (.5.76) 
Js  Js  

where the kernels that operate on the variables A and B are; 

1 1 
T = -V(-—) X n X +V( )n-

47rr 47rr 

^ 
Ê is the secondary variable x .4 x n 

Since the kernels in these integrals need to be regularized, they are written in a 

convenient form as 

A[x' ,y ' ,  z ' ) f .TAds-h [  f  Ads = 
Js Jse 

J fÙÈds-\-  J  ÛBds (5.78) 

The kernels under the s' domain are non-singular, while those inside the domain of 

Se are singular. Thus in the singular domain, the above equation can be written as 

A{x' , / ,  z ' )  +[  i t -  f)Ads + [  tAds = 
JSc Js t  

f  { Ù - Ù } è d s - [  t ' B d s  (5.79) 
J S t  JSe 



www.manaraa.com

62 

~ . 1 ~ 1 
T is defined as V(^^) and U is In equation (5.79) the second term on the left 

hand side and the first term on the right hand side regularize the integral and reduce 

the order of the singularity. The remaining integrals are then integrated analytically. 

Thus the final form of the equation which is discretized in the boundary element 

formulation used in the dissertation is 

A{x' ,y ' ,  z ' )+ [ ,  TAds + /  fÂds + [  { f  -  f)Ads 
Js' Jse Jse 

= f ÙÈds+ f ÙÈds+ [  {Ù — Û)Bds (5.80) 
Js^ JSe JSf  

'Se  JSe 

^  ùêds+ f 
JSe JSe 

Discretization 

For a typical eddy current geometry (Figure 5.1), only the boundary, or the sur­

face, of the probe and conducting specimen are discretized. Four node isoparametric 

quadrilaterals are used for discretizing the surface. The associated shape functions 

are given in Appendix A. A and B are interpolated using the shape functions as, 

4 
Ai^{x,y ,z)  = ^ ̂ ;(r,g)yl^-

i=l  

4 
^  k  =  x , y , z  (5.81) 
•t=l 

Similarly, the derivatives of A are represented as 

^ A .  

9 y  d y  

^ k = x,y,z (5.S2) 
i=l  
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The Jacobian of the transformation is derived similarly to that in the finite element 

case (see chapter 3). The surface area for a 3D geometry is given by 

ds = y/Ddrds (5.83) 

where D is the determinant of the first fundamental magnitude. £) is a 2 x 2 matrix 

formed by multiplying the reduced Jacobian RJ. Thus D = RJ x where 

dx ^  dz 
"Ur or  W 
dx A/  dz  

RJ = (5.84) 
a x  g y  d z  

.  ifs  cfs .  

The next step is to integrate eciuation (5.77) over the domain surface and collocate 

it at every node point. Both two and three point Gauss quadrature rules are used 

for integrating. After collocating and integrating, the computation yields a global 

matrix equation 

= [U]{è} (5.85) 

where [V] and [U] are '3M x '3M coefficient matrices and {A} and {È] are the Z M  x 1 

vectors of the unknown functions. M is the number of surface nodes in the mesh which 

is normally much less than the number of volume nodes. 

Linking process 

The FEM and BEM global matrix equations are: 

[G]{/l} + [T]{A} = {Q} (.5.86) 

[V]{A} = [U]{B] (5.8T) 
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Since B is to be eliminated, 

{ B )  =  [ U r \ v ] { A }  (5.88) 

This is substituted in equation (5.83) to obtain 

[ G ] { A }  +  [ T ] { [ U ] - H V ] } { A }  =  { Q }  (5.S9) 

Combining these two terms in the above equation, the final global system of equations 

is obtained: 

The final global matrix is solved to obtain the final solution. It is relevant at this 

juncture to describe the nature of this global matrix generated by the FEM.'BEM 

and the hybrid formulation. 

In the domain FEM, the global matrix is the ideal matrix from a solution point of 

view. Though the number of rows and columns are large due to volumetric discretiza­

tion, these matrices are normally symmetric. They are always sparse, banded and 

in general diagonally dominant. Thus most algorithms use compact storage schemes 

like skyline storage to store the non-zero terms of half the matrix (i.e upper or lower 

triangular matrix with the diagonal terms). The matrix is also well conditioned and 

a number of solution techniques are used to solve it. 

The integral BEA'I, generates a smaller global matrix since only the smface is 

discretized. .4s it is based on the two point Green's function formulation, the matrix 

is always fully populated. There is no symmetry involved and it is not necessarily 

diagonally dominant. By averaging the off-diagonal terms, the matrix can be made 

[A'j{A} = {Q} (5.90) 

where [A'] = [ G ]  +  
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symmetric if required. If there are sharp corners in the geometry, then these could 

make the matrix ill-conditioned due to the singular integration. 

In the hybrid formulation linking process between the finite and the boundary 

element matrix, the process involves two steps; 1) the surface finite element matrix is. 

multiplied with the boundary element matrix (equation 5.89) and 2) the resultant of 

1 is added to the global finite element matrix (equation 5.89). In step 1 the multipli­

cation of two symmetric or unsymmetric matrices always results in an unsymmetric 

matrix. Thus, when added to the global finite element matrix it makes the final 

global matrix unsymmetric. .A.nother disadvantage is that the sparsity of the finite 

element matrix is also lost. Thus the total matrix needs to be stored for obtaining 

the final solution. 

A standard Gaussian elimination for complex matrices is used to solve this set 

of linear equations. Chapter S will present the results obtained form applying the 

formulation to an absolute eddy current probe over an aluminium block. 
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CHAPTER 6. POTENTIAL DROP METHODS: RESULTS 

Chapters three and four discuss the finite element and boundary element formu­

lation for the DCPD and ACPD methods of nondestructive testing. In this chapter, 

the results of the 2D and 3D simulations of the finite element and boundary element 

model on the various fatigue specimens are compared to existing data. The next 

chapter compares and contrast the two numerical techniques. All the calculations in 

the study are performed on the S tardent GS 1000 computer. 

ACPD Method 

Only 2D simulations are reported for the ACPD method. For the measurement 

model, two simple geometries are considered. The first is a one dimensional crack 

with an infintesimal thickness and the second is a semi-circular crack with a finite 

aspect ratio (Figure 6.1). The initial step is to confirm the probe response as it scans 

across the specimen. This is achieved by comparing the normalized probe voltage of 

the finite and boundary element simulations to experimental data. 

The discretization for the finite element simulation uses three node triangular 

elements while the boundary element simulation uses three node line elements. .A 1.6 

kHz alternating current input is the excitation source to generate the electric fields 

in the specimen. 
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•< 80 »• 40 -

a) b) 

Figure 6.1: a) One dimensional crack specimen with an infinite aspect ratio crack 
and b) Semi-circular cracked specimen 

Figure 6.2 is the plot of the normalized probe voltage as a function of the probe 

movement as it scans the crack from left to right. As one leg of the prolje approaches 

the crack, there results a dip in the voltage which then jumps to a high level at the 

tip of the crack. As the other leg comes closer to the crack, the voltage drops and is 

then normalized to a constant level away from the crack. The finite and l)oundary 

element predictions [133] are very similar to the experimental data [116]. 

The frequency of the excitation is increased to reduce the skin depth in the 

specimen. Figure 6.3 and Figure 6.4 are the normalized voltages for four different 

voltages for the finite and boundary element models respectively. The skin depth 

reduces with increasing frequency, indicated by the drop in the voltage between the 

probe legs. This is a characterstic response of the probe used in the ACPD method. 

All the figures confirm the validity of the numerical models. For a very low-

frequency, the skin depth is much greater than the crack depth and is called the 

thick skin approximation. Using equation (3.9), the crack depth can be predicted 

for different probe widths and constant frequency. The finite and boundary element 
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Figure 6.2; Normalized probe voltages for the infinitesimal thin crack for the FEM. 
BEM models and experimental data [116] 
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Figure 6.3: Finite element predictions of the normalized voltages for four different 

frequencies or four skin depth to specimen width ( j) ratios 
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Figure 6.4: Boundary element predictions of the normalized voltages for four differ­

ent frequencies or four skin depth to specimen width ( g) ratios 
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predictions are shown in Figure 6.5. A maximum error of 6 % is achieved between 

the actual and numerically predicted crack depth. 

Figure 6.6 is finite element representation of the current distribution in the ma­

terial, clearly indicating the exponential decrease in the current magnitude and the, 

perturbation due to the crack. The next two results are for the semi-circular crack. 

Figure 6.7 shows the potential value across the crack for the FEM, BEM models and 

experimental values [134]. The error calculated between the numerical and experi­

mental data is less than 5 %. Finally to complete the study, the potential distribution 

in the specimen is plotted in Figure 6.8, demonstrating the shape of the crack. This 

is the result from the finite element simulation. 

The modeling of the ACPD method demonstrated the usefulness of numerical 

modeling. The model not only helped in visualizing the voltage and current distribu­

tion in the specimen, but the crack depth is also predicted. Comparing the numerical 

predictions to experimental data, confirmed the validity of the numerical models. In 

the next section the DCPD method is modeled in both two and three dimensions. 

DCPD Method 

In the DCPD method, a direct current is applied to the specimen and the po­

tential that develops across the crack is monitored. These potentials are plotted 

as calibration curves (see page 15) and used for predicting the fatigue crack length. 

Results from 2D and 3D simulations are presented below. 
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Figure 6.5: Finite element and boundary element predictions of the crack depth for 
three probe widths. A =12.5.29 and 58mm 
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Figure 6.6: Finite element predictions of the current distribution in the specimen 
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Figure 6.7: Finite element, boundary element and experimental data for the poten­
tial across a semi-circular crack 
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2D simulations 

The compact tension (CT) and the single edge notch (SEN) specimen (Figure 

3.2) are discretized in the 2D simulations. Figure 6.9 shows the finite element mesh 

for both the specimens. Only half the geometry is modeled due to symmetry. For 

both the specimens, the input is modeled as boundary conditions for the potential. 

In the CT specimen, a point on the left boundary is maintained at voltage Iq with 

a reference voltage oî V = 0 at the uncracked part of the specimen, while for the 

SEN specimen all the nodes on the left boundary of the specimen are maintained at 

voltage Vi-

Figure 6.10 and Figure 6.11 compare the calibration curves generated by the 

numerical models with experimental data for the SEN and CT specimen respectively. 

These curves depict the ratio of the potential as the crack increases, to the potential 

due to the initial crack, (^), as a function of the crack length to specimen width 

ratio (-^) (Figure 3.2). Additionally, the data obtained from Johnson's formula 

(equation (3.2)) is also plotted in Figure 6.11 for the CT specimen. Again these plots 

confirm the numerical models. 

Figure 6.12a shows the equi-potential contours obtained from the finite element 

model for the CT specimen while Figure 6.12b shows the equi-potential and equi-

current contours for the SEN specimen. The effect of the crack, source position and 

other features are clearly demonstrated by the field plots. 

The calibration curves are dimensionless quantities which make them universal. 

Researchers [41,101] have noted that these curves are independent of material prop­

erties, current input magnitude and thickness of the specimen. In the 2D analysis, 

the material property (conductivity) and voltage V'l were changed to different values. 
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Figure 6.9; Two dimensional finite element mesh for a) SEN specimen and b) CT 
specimen 
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Figure 6.10: Calibration curves for the SEN specimen 
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Figure 6.11: Calibration curves for the CT specimen 
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Figure 6.12; a) Equi-potential contours in the CT specimen from finite element data 
and b) Equi-potential and equi-current contours for the SEN specimen 

using finite element data 
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However, there were no changes observed in the calibration curves. To the best of 

the author's knowledge, a 3D numerical analysis using the DCPD method to see the 

effect of material thickness on the calibration curves has not been reported. The next 

section describes a 3D simulation of the CT specimen using the DCPD method. 

3D simulations [135] 

Figure 6.13 shows a CT specimen with the dimensions as shown. Again, sym­

metry of the specimen and test procedure allow for a quarter of the geometry to be 

modeled. As mentioned in an earlier chapter, the finite element model needs volu­

metric discretization which necessitates the use of eight node hexahedral elements. 

On the other hand, surface discretization, as required when using the BEAi needs 

four node quadrilateral elements. 

To validate the 3D finite and boundary element models, calibration curves for 

a 25.4mm specimen are compared to Johnson's formula and the 2D finite element 

prediction in Figure 6.14. These curves are comparable over a wide range of crack 

lengths. 

To view the effect of sample thickness. Figure 6.15 plots the calibration curve 

for specimen thickness ranging from 6.25mm to 25.4mm. The last calibration plot 

compares the finite and boundary element predictions for two different specimen 

thicknesses (Figure 6.16). 

The potential distribution on the top surface of the specimen is plotted for 

both the numerical models in Figure 6.17. The distributions are nearly identical in 

magnitude and shape. To complete this study the solution of the potential obtained 

by the finite element model is plotted for different thickness slices in Figure 6.IS. 
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Figure 6.13: A quarter of the CT specimen used in the 3D modeling 

The effect of the source point and crack is very clear in all the layers. 

The next chapter will discuss these results in detail and the requisite computa­

tion resources. The finite element and boundary element model are compared and 

contrasted based on these results. 
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Figure 6.14: Calibration curves for the CT specimen comparing analytical, experi­
mental [41] and numerical data 
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Figure 6.16: Finite element and boundary element predictions of the calibration 
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a) Finite element prediction of the potential distribution on the top 
surface and b) Boundary element predictions of the potential distribu­
tion on the top surface 
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Figure 6.18: Potential distribution at different thickness slices in the sample a)top layer where the source is present b) second 
layer at a thickness of 6.25 mm c) third layer at a thickness of 12.5 mm and d) bottom layer at a thickness of 
25.4 mm 
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CHAPTER 7. FINITE AND BOUNDARY ELEMENTS: ANALYSIS 

One of the goals of this dissertation is to compare and contrast the FEA'I and 

BEM as applied to electromagnetic NDE. It is worth reiterating that an efficient 

forward numerical model is of extreme importance to the NDE community. The 

major benefits of the forward numerical model are able to: 

• visualize the energy/defect interaction which helps in understanding a given 

phenomenon 

• duplicate certain experiments which are difficult to replicate in a laboratory 

environment 

• obtain the transducer response 

• use the model as a test bed for generating data for the inverse problem [136] 

• model complex shapes and geometries, non-linearities, anisotropy and other 

parameters 

In today's computer aided design environment, effort is being devoted to incorporate 

NDE models at the design and manufacturing stage of product development in order 

to design and fabricate parts that would be easy to inspect and know apriori which 

type of NDE method could be applied at a later stage. Thus it is necessary to identify 
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and choose the best model for the application. This implies that the ideal numerical 

method has to be identified to satisfy this need. Modeling of the ACPD and DCPD 

method is the vehicle in this dissertation to highlight the issues involved in the FEM 

and BEM, two numerical models discussed in this dissertation. 

When talking about the BEM and FEM, a particular consideration is that the 

BEM, which solves an integral equation for variables on the boundary, is of one 

dimension lower than the FEM. For 3D problems, the FEM discretizes the volume 

as compared to the BEM which discretizes the surface. In general, mesh generation 

for volume discretization is more complicated than surface discretization, especially 

for complex geometries. An important issue with respect to mesh generation is the 

degree of fineness of the mesh for both the FEM and BEM. 

For the results obtained in chapter 5, the mesh density in all the situations was 

altered depending on the geometry and expected field gradient. In the initial meshes 

for both the 2D and 3D models, the nodes for the boundary element model correspond 

to the boundary nodes generated by the finite element mesh. Later, maintaining the 

same solution accuracy, the mesh was optimized by computing the difference in the 

solution as the number of nodes was decreased for both models in the 3D DCPD 

method simulation of the CT specimen. This resulted in 260 and 154S nodes for 

the boundary element and finite element models respectively. As expected far fewer 

nodes were required for the boundary element model. 

A distinctive characteristic of the BEM is the two point kernel function or the 

Green's function. This kernel depends on the problem dimension and type of PDE 

being solved. For Laplace's problem (DCPD method) in 2D, the Green's function is 

In r while in 3D it is For more complicated integral equations, the generation 
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of this function is a task by itself. Since the Green's function is singular at r = 0, this 

point is to be excluded from the integral equation. In other words, singular integration 

is to be performed. Normally the integral is regularized to reduce the order of the 

singularity, then integrated. This is done analytically, which is a tedious process,, 

making the implementation complex. On the other hand, the FEM is a standard 

technique and numerically does not vary either with the problem type or dimension. 

This makes it conducive to more general applications which as evidenced by the large 

number of commercial packages available in the market. The only limitation is the 

size of the problem to be handled which determines the required computer resources. 

Another prominent feature of the BEM is the ease of handling infinite boundary 

problems. Though the DCPD and ACPD method are finite boundary problems, the 

hybrid model for eddy current applications involves an infinite boundary. The BIE 

equation for the boundary at infinity is dropped because the potential functions in 

the BIE satisfy radiation conditions. Thus only the surface discretization is necessary 

around the region of interest. An example where the infinite boundary is eliminated is 

the eddy current model where only a surface mesh is needed around the conductor and 

probe coil. The FEM requires discretization everywhere making it computationally 

expensive for 3D problems. Techniques such as ballooning [98], infinite elements [97] 

and others have been used by various researchers to handle infinite boundaries with 

finite elements. 

From a qualitative point of view in NDE, researchers are interested in both the 

transducer response and the energy/defect interaction. For the 20 .ACPD method, 

probe voltage as a function of scan distance is plotted in Figure 6.2 to 6.4. This 

is the voltage obtained at two points as the probe scans the specimen. Figure 6.6 
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shows the current distribution in the specimen from which one can visualize the 

perturbation due to the crack. The effect of the frequency and material properties 

on the magnitude of the current, and the probe's sensitivity to cracks, can also be 

clearly seen. Similarly, the potential distribution in Figure 6.8 determines the exact, 

shape of the crack. In fracture mechanics, the calibration curves for the SEN and 

CT specimen provide information to predict the crack growth as shown in Figure 

6.15 and 6.16. These depict the potential monitored at two locations where the 

probe straddles the crack. Again, the extent to which the fatigue crack perturbs the 

potential and the current in the specimen using the DCPD method is observed in 

Figure 6.12. Figure 6.12b clearly shows that current continuity is maintained with 

the current contours being concentrated in the uncracked portion of the crack. A 

highlight of the 3D DCPD modeling of the CT specimen is indicated in Figure 6.IS. 

The potential distributions in the different layers in the CT specimen are nearly 

identical except close to the excitation point. This confirms that the calibration 

curves are independent of thickness. 

The issue discussed in the above paragraph leads one to believe that, if only 

calibration curves are needed for a particular application, the BEM is better suited. 

In general, if the solution is required at specific points on the surface, the BEM is more 

efficient. In eddy current NDE, the probe response is interpreted as the impedance of 

the probe coil. Generally, the volume of the coil is much smaller than the volume of 

the conducting medium. Thus if one needs to compute only the probe impedance, the 

BEM is very attractive. If one requires the solution in the total domain or volume, 

the FEM is ideal. This is due to the fact that in the F EM, the solution already 

exists everywhere in the domain, thus requiring a minimum of post-processing. If an 
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infinite boundary problem is to be solved, the BEM has an inherent advantage. This 

is normally encountered in electromagnetic problems where the electric and magnetic 

fields aiound the region of interest need to be considered. Thus depending on the 

application, and the solution required, one can identify the type of numerical model, 

to be used. 

A major issue for all numerical methods is the computer resources required for 

a particular application. The next section discusses this issue for the two numerical 

methods. 

Computer Resources 

The two issues that need to be considered for any numerical method are a) 

computer memory storage and b) execution time or cpu time. .After deciding on a 

formulation for a particular application and before implementing it on the computer, 

one needs to consider techniques that minimize the memory storage requirements 

and execute the algorithm in the shortest possible time. Achieving these criteria is 

not a simple task at all times. 

Mesh optimization directly impacts the computer resource requirements. The 

growth of computer storage needed for the stiffness (global) matrix is the deciding 

factor in the overall storage requirements for both the numerical models. .As discussed 

in Chapter 6, the FEM global matrix is banded, symmetric and sparse, while the BEM 

matrix is fully populated and non-symmetric. Table 7.1 summarizes the computer 

resources needed for the 2D modeling of the CT and SEN specimen using the DC'PD 

method. Similarly Table 7.2 outlines the memory recjuirements and cpu time involved 

for modeling the 2D fatigue crack specimen using the .A.CPD method. For both cases. 
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Table 7.1: Computer resources for 2D SEN and CT specimen 

SEN CT 
FEM BEM FEM BEM 

Number of nodes 1116 38 972 68 

Number of elements 2100 19 1720 34 

Bandwidth 33 39 54 69 

CPU time(seconds) 3.05 0.566 4.06 1.07 

Total memory (words) 46K 3K 53K 9K 

the finite element model uses three node triangular elements while the boundary 

element model uses the three node line elements. 

It is obvious that the BEM is more economical for both cases. In the 3D modeling 

of the CT specimen, only the non-zero terms of the finite element stiffness matrix 

are stored, using the least computer storage. Figure 7.1 plots the increase in storage 

as the number of unknowns increases for the finite and boundary element models. 

For a finite bounded problem such as the DCPD and ACPD modeling, the FEM 

is attractive, if special storage techniques are implemented. If an infinite boundary 

problem is to be modeled, then the BEM will be more economical, since the number 

of unknowns needed for the finite element model will be much larger. 

In the process of solving a set of linear equations, there is a close relationship 
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Table 7.2: Computer resources for 2D fatigue crack specimen 

VARIABLES FEM BEM 

Number of nodes 4097 278 

Number of elements 7680 139 

Bandwidth IS 278 

CPU time(seconds) 22.5 4.6 

Total memory (words) 75K 7SK 

between the storage of the global matrix and the solution algorithm. The stiffness 

matrices resulting from the finite element and boundary element formulations are 

symmetric and non-symmetric respectively. The final global matrix for the hybrid 

formulation is non-symmetric. If there are A''variables to be solved, then a full storage 

requires N" matrix elements, while a skyline storage [140] scheme for a symmetric 

matrix needs N matrix elements. An ideal and optimum matrix stores only the 

non-zero elements of the matrix which could be as low as matrix elements for 

a symmetric matrix. 

In this research, all of these storage schemes have been used. For the 2D finite 

element programs, the global matrix is symmetric and banded. The matrix stored 

is (iV X [{^-^) + 1)) where IB is the bandwidth. Storage of only the non-zero terms 

of the stiffness matrix was implemented in the 3D finite element modeling of the CT 
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specimen using the DCPD method. In the 3D hybrid formulation, skyline storage 

was used. Since boundary element matrices are always non-symmetric and fully 

populated, complete storage is the only option applicable. In 3D, it is common to 

have meshes with over 1000 nodes, and with three to four variables per node, optimum, 

matrix storage is essential. Thus considerable effort must be devoted to incorporating 

such storage schemes in the finite element algorithm. 

Execution times for the finite element model depend solely on the solution rou­

tine, while for the boundary element model they depend on the singular and regular 

integration and solution procedure. For the 3D modeling of the CT specimen, with 

identical tolerance for the finite and boundary element solution, the cpu time as a 

function of number of unknowns is plotted in Figure 7.2. The FEM curve shows a 

gradual increase in execution time which is attributed to the efficient preconditioning 

of the iterative, incomplete Cholesky conjugate gradient solver. The BEM model 

uses the direct Gaussian elimination. Again for finite boundary problems, using an 

efficient solver, the FEM is surprisingly fast. One can speculate that for infinite 

boundary problems, the BEM will be faster. Nevertheless, both these curves im­

ply that mesh optimization is more crucial for boundary element models than finite 

element models. 

In general, the solution of a linear system of equations is achieved by direct or 

iterative solvers. The most popular of direct solvers is the Gauss elimination scheme. 

It is fast and easy to implement, for well conditioned matrices. Also finite element 

matrices are diagonally dominant, a characteristic that speeds up the algorithm even 

further. A major drawljack is that to solve with a direct solver the full stiffness matrix 

has to be stored in the computer core memory. 
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Iterative solvers are generally considered to reduce the core storage and de­

crease the solution or cpu time. Popular techniques include successive over relaxation 

(SOR), Gauss Seidel, conjugate gradient and others. With stable matrices and a re­

alistic convergence criterion, the aim is to let the solution converge as fast as possible, 

(For Adéquations, number of iterations must be AO-

Since the incomplete Cholesky conjugate gradient (ICCG) algorithm was used 

in the 3D finite element model of the CT specimen, it was found that for a typical 

conjugate gradient iteration the storage needed was of 0(N). By preconditioning the 

matrix, one not only guarantees convergence but also drastically reduces the number 

of iterations (iterations <K N)- This impacts the execution time for each iteration 

and the total cpu time. Once again additional effort is required to implement these 

solution routines into tiie finite element programs to make them quick and efficient. 

This chapter compares and contrasts the FEM and BEM as applied to the po­

tential drop methods. The FEM and BEM are complementary techniques having 

their own advantages and disadvantages. With this information, a user can choose a 

particular model depending on the specific application of interest. The next chapter 

presents results of the hybrid finite boundary element model for eddy current NDE. 
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Figure 7.1: Computer memory requirements for the 3D finite and boundary element 
models (Note: only non-zero elements stored in the finite element model) 
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CHAPTER 8. EDDY CURRENT NDE: RESULTS 

The latter part of this dissertation describes the feasibility of developing a 3D hy­

brid finite element-boundary element (FE/BE) model for eddy current NDE. Chapter 

5 outlined the hybrid formulation in detail. To establish the validity of this model, 

the results are compared with 2D finite element calculations when applicable, and 

with published experimental data. 

All the calculations in this study were performed on a Project Vincent DEC 5000 

workstation. This includes mesh generation, global or stiffness matrix assembly and 

post processing of the data generated by the model. Two geometries are modeled for 

the feasibility study, a) an absolute eddy current coil in air (Figure 8.1) and b) an 

absolute eddy current coil over an aluminum block (Figure 8.2). 

In practical eddy current testing, the transducer response is the change in probe 

or coil impedance as the probe scans the surface. The hybrid numerical model cal­

culates the magnetic vector potential and the electric scalar potential everywhere in 

the domain. It is thus essential that the probe impedance be computed from the 

solution, A and <p. The next section describes the impedance calculation. 
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Figure S.l: Absolute eddy current probe in air 

Probe Impedance 

The impedance of a circular coil of radius can be calculated from the distri­

bution of .4 [14]; 

where Ig is the source current in the probe . With discrete values of A. this simple 

scheme is not applicable. The simplest way to overcome this problem is to assume an 

average value of Aj and /-j for each element in the coil. Thus for a coil of an elements 

in the probe cros-section and A, being the are of the ith element, the impedance can 

be calculated as 

z = E (S-2) 
i - l  
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Figure S.2: Two views of au absolute eddy current probe over an aluminum block 
a) top view and b) side view 
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with and being the centroidal values in each element. The self inductance of 

the probe can be calculated directly from equation (8.2) as 

In equation (8.1), A is implicitly assumed to be constant along the circumference 

of the coil. This implies that all the above equations are true for axisymmetric 

geometries only. 

Another approach for calculating the impedance for 3D geometries is presented 

by Ida [15]. It is based on the energy of the system, and associates the system 

inductance with the stored energy and its resistance with the dissipated energy. The 

stored energy is expressed as 

(8.3) 

(8.4) 

over the entire volume of the system. This equation is rewritten in terms of B for 

each element with volume u,; as 

For a domain with nn elements, the total energy is computed as 

(8.6) 

From this, the inductance of the probe coil is 

•2W 
(8.T) 

s 

The dissipated energy in the system is 
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where Jgj is the resultant eddy current density given by 

j'ei = (8.9) 

Again for a discrete system with nn elements, the total dissipated energy is 

^ 9 0 

2=1 

The probe resistance now becomes R = -^ and the total coil impedance is 

Z = ^ { P  +  j u 2 W )  ( 8 . 1 1 )  
• '5  

The general procedure for the hybrid Hnite-boundary element algorithm is shown 

in a flow chart in Figure 8.3. It consists of 

• Boundary and finite element discretization 

• Calculation of the boundary element global matrix 

• Current distribution calculation for the volume elements 

• Calculation of the finite element stiffness matrix 

• Linking both formulations 

• Solution algorithm to compute A and 4> 

• Post processing 

The next section describes the results for the two cases. 
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Figure 8.3: Hybrid fiaite-bouiidary element algorithm flow chart 
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Coil in Air 

The coil geometry in Figure 8.1 has an inner diameter (I.D) of 12.4 mm, outer 

diameter (O.D) of 25 mm and is 6.25 mm thick. It is modeled as an ideal coil with 

a = 0.0 Sjm and /ir = 1. 

Discretization 

Discretization of the domain is a key step in the overall procedure. As mentioned 

in an earlier chapter, the discretization must be more dense where the field gradient 

is high and less dense everywhere else, to optimize the number of nodes and elements. 

The meshes utilized in this research were generated with an inhouse mesh generator. 

The boundary element formulation described in this study uses four node quadri­

lateral elements to discretize the surface or boundary of the probe as shown in Figure 

8.4. Volume discretization for the FEM uses eight node isoparametric brick elements 

with the surface nodes of both meshes coinciding. 

Current distribution 

The current in the coil is assumed to lie in the x-y plane with each element having 

two components of the current. Referring to Figure 8.5, the x and y components of 

the current are given by 

•^x = J[) sm{0) 

Jy = jQCOs(f) (8.12) 

where JQ = 1000 + jO.O A//»". The frequency of the excitation is 900 Hz. This 

information is introduced in the algorithm through the material property in the finite 
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Figure 8.4: Surface mesh for the probe in air 

element formulation. 

Results 

The inductance of the probe is computed using equation (S.3). For the given 

probe dimensions, the inductance in air is 220 m H [137]. Table 8.1 gives the computed 

value of the inductance for different levels of mesh discretization. These results clearly 

indicate that the inductance value is approaching the desired value as the number of 

elements and nodes in the mesh increases. 

Coil Over a Block 

The coil in air is now placed over an aluminum block with dimensions of 120 x 

SO X 12.2 mm as shown in Figure 8.2. Conductivity of the block is 3.06 x 10' S/m 
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Y 

Figure 8.5: Specification of current density in the eddy current probe. Only a quar­
ter of the probe coil is shown 

Table 8.1: Computed probe inductance with increasing discretization 

number of volume nodes Inductance (inH) 

96 4&4 

1^ 6&3 

144 157.87 

192 186.4 

216 194.17 
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Table 8.2: Discretization data for computing the lift-off characteristics 

VARIABLES BLOCK PROBE 

BEM nodes 54 142 

BEM elements 66 1.30 

FEM nodes 80 144 

FEM elements 36 64 

and the relative permeability is 1. 

This model is tested for two cases: 

1. Comparing lift-off characteristics with experimental data 

2. Comparing the values of A and eddy current density in the block with 2D finite 

element data. 

Discretization 

The geometry is discretized differently for each of the above cases. For comparing 

the lift-off characteristics, the probe is discretized more densely than the block, as 

shown in Figure 8.6. Table 8.2 gives the discretization for case i. 

The change in inductance ( A L ]  is computed as the probe is lifted off the alu­

minum block with AL = 0 defined when the probe is resting on the block surface. 

Equation (8.3) is used for computing the inductance. The numerical and experimen-
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Table 8.3: Discretization data for computing the eddy current density 

VARIABLES BLOCK PROBE 

BEM nodes 106 32 

HEM elements 128 32 

FEM nodes 175 32 

FEM elements 96 8 

tal data [137] relating to the change in inductance as a function of lift-off is plotted 

in Figure 8.7. The numerical values show the same trend, qualitatively. Two reasons 

can be attributed to the discrepancy, 1) insufficient discretization in the block and 

probe, and 2) calculation of the inductance using (8.3) is true only for axisymmetric 

geometries. Though the block is much larger than the probe, and at 900 Hz, the mag­

netic fields are localized, the geometry is still not axisymmetric. There is a certain 

error also introduced when calculating the centroidal values. 

In the second case, the comparison is made for A and the eddy current density 

in the block. Since these quantities drop exponentially with depth in the block, the 

discretization is more dense in the upper layers of the block. In particular the skin 

depth at 900 Hz is 3.02 mm and so there are two elements per skin depth. This 

discretization is still not sufficient. Figure 8.8 shows the surface mesh for the probe 

and block while Table 8.3 gives details of the mesh. 
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Figure 8.7: Lift-off characteristics for the absolute eddy current probe over the alu­
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Figure 8.9; 2D mesh for probe over a blocls 

An axisymmetric study of a probe over a block having the same dimensions 

is conducted. A 2D mesh using triangular elements showing the block, coil and 

boundary at infinity is seen in Figure 8.9. With one variable per node in the 2D 

case, a dense mesh is easily handled. The magnetic flux distribution around the coil 

is visualized in Figure 8.10. 

The value of A at the tip of the probe, down the block, is plotted for the 2D 

and 3D case in Figure 8.11. The 3D curve shows a similar trend to the 2D case. One 

needs to keep in mind that the probe discretization is very coarse and the probe is 

not circular. 

Finally the eddy current density for every element in the block is calculated using 

equation (8.9). Figure 8.12 plots the eddy current density as a function of the block 
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Figure 8.10: Flux plot for the absolute coil over the block 

thickness. The two curves for the 2D mesh correspond to points under the probe and 

away from the probe as indicated on the figure. The 3D mesh has only one element 

under the coil and so the eddy current density is plotted for the element position 

down the block. Again, qualitatively the results show similar features. 

Most of the meshes in this study have between 200 to 225 nodes. With four 

variables per node, the number of unknowns to be solved is 800 to 900. This is 

the upper limit that the workstation can handle in terms of the memory storage of 

the hybrid code without any problems. The cpu time for the entire algorithm to be 

executed for 225 nodes is around 28 minutes. 

With the results presented above, one can confidently say that the feasibility 

study ot the hybrid formulation was successful and that the hybrid model shows 
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promise for adaptation to various eddy current NDT situations. 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

The main goals of this dissertation are as follows: 

• to develop a multiformulation strategy involving the FEM and BEM as applied 

to electromagnetic NDE. This involves developing and implementing finite ele­

ment, boundary element formulation for specific applications, and then to com­

pare and contrast the finite element and boundary element methods as applied 

to low frequency electromagnetic NDE 

• to conduct a feasibility study of a three dimensional, hybrid finite element-

boundary element model for eddy current NDE 

This chapter ties together all the issues discussed in the earlier chapters and proposes 

directions for future work. Specifically, conclusions are drawn from the modeling of 

the fatigue crack specimens using the DCPD and ACPD methods regarding the 

advantages and disadvantages of using the finite and boundary element methods, 

and the feasibility of using the hybrid formulation for eddy current applications. 

Some practical issues regarding mesh generation, computer resource requirements 

and others are discussed. Finally future directions to modify and apply the 3D 

hybrid model to other situations are suggested. 
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Conclusions 

To achieve the first goal, the following numerical models are developed: 

• 2D finite and boundary element models of the CT and SEN specimen using the 

DCPD method. 

• 3D finite and boundary element models of the CT specimen utilizing the DCPD 

method 

• 2D finite and boundary element models for fatigue crack specimens using the 

ACPD method. 

Conclusions drawn from the development of these models are discussed below. 

In the field of fracture mechanics, the fatigue crack growth is predicted via calibration 

curves generated for typical CT and SEN specimens using the DCPD method. These 

curves plot dimensionless quantities which are a function of the probe width and 

voltage input. Both the 2D finite and boundary element models predict curves com­

parable to analytical (.Johnson's formula) and experimental data luitli the nuintrical 

predictions closer to the experimental data than Johnson's formula. This suggests 

that Johnson's formula is pessimistic or less accurate for the CT specimen. This can 

be attributed to the specimen clamping holes and a point excitation which makes the 

field non-uniform close to the crack. The potential distribution plots obtained from 

the finite element data show the uniformity of the potential close to the crack in the 

SEN specimen and non-uniformity for the CT specimen. 

As mentioned earlier, this is the first time a 3D numerical model of the CT spec­

imen using the DCPD method has been reported. Calibration curves for different 
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specimen thicknesses are predicted and compared to 2D and experimental data. Po­

tential distribution plots are made at different thickness slices of the specimen from 

finite element data. The plots clearly indicate that the perturbations of the potential 

due to the crack are localized, close to the crack, implying that the thickness of the-

specimen does not affect the calibration curves. Thus one can conclude that a 2D 

numerical model is sufficient, within tolerable limits to predict fatigue crack growth 

behavior. 

After solving Lajilace's equation, the scalar Helmholtz equation representing the 

ACPD method is solved by modeling an infinitesimal thin crack and a circular crack. 

Finite and boundary element models predict the potential across the probe as the 

probe scans the specimen. Using these data, the models predict the crack length for 

the infinitesimal thin crack. Finite element data are used to visualize the current 

distribution in the thin crack specimen and construct the shape of the semi-circular 

crack. The Green's function, a modified Bessel function of the second kind, order 

zero, is successfully implemented in the boundary element algorithm. 

The above sequence of work can lead to three major conclusions from the user's 

point of view: 

1. If one is interested in the solution at specific points on the boundary of the 

domain, then the boundary integral equation with the corresponding Green's 

function should be developed for the specific boundary conditions. Using the 

BEM, the BIE can be solved to obtain the solution. This is true for both 2D 

and 3D problems. 

2. On the other hand if the solution is needed everywhere in. the domain to study 

the energy/defect interaction and obtain the transducer response, then the finite 
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element model is the obvious choice. This is due to the fact that the volumetric 

discretization allows the solution to be obtained in the total domain. 

3. For 3D boundary value problems with the boundary at infinity, the BEM or a 

hybrid method combining the finite element and boundary element formulation 

should be utilized. This would enable the modeling of complex 3D structures 

with sufficient discretization to produce realistic data. 

The comparison of the FEM and BEM utilizing the 2D and 3D models of the 

CT and SEN specimen, using the DCPD and ACPD methods, leads one to believe 

that in general, the FEM and BEM are complementary techniques each with their 

own advantages and disadvantages. The contrasting features are best highlighted in 

Table 9.1. The discussion of matrix features, size and type of integrals involved for 

a given problem are key in deciding the computer resource requirements. Thus, one 

can conclude that the decision to use a particular modeling technique depends on a 

number of related factors such as application, geometry, available computer resources 

and others. 

Another key issue to be considered while comparing the BEM and FEM. or 

for that matter any numerical algorithm, is that of computer resources. Computer 

memory storage and the cpu time are the resources to be optimized. For the BEM, 

the cpu time depends on the numerical integration of the kernels and the solution of 

the linear equations. By using solvers from established mathematical packages such 

as LINPACK, the solution time is optimized. Regarding the numerical integration, an 

adaptive integration sciieme is utilized. This uses lower quadrature order for planar 

elements with higher order of integration for corner or complex shaped elemenl.s. 
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Table 9.1: Complementary features of the FEM and BEM 

FEM BEM 

Domain method Integral method 

Volume discretization Surface discretization 

No singular integrals Singular integrals in the Green's function 

Symmetric, Sparse and banded matrix Non-symmetric and fully populated matrix 

In the finite element algorithm, both the issues of computer memory and cpu time 

are critical. As implemented in the 3D finite element modeling of the CT specimen, 

only the non-zero terms of the symmetric global matrix are stored. Similarly in the 

3D hybrid code, the skyline storage is used for the finite element matrix which reduces 

the burden on the core memory storage. An efficient ICCG iterative solver reduces 

the cpu time drastically by reducing the number of iterations. This leads one to 

conclude that for the FEM, a lot of effort has to be devoted to store the (jlobal matrix 

in a compact form and use the most efficient solver for the set of linear equations to 

make the uUjoritlmi competiiive tuith other 3D iiumerical techniques. 

A key ingredient to optimize computer resource.^ is the mesh generator or the 

discretization scheme. All the meshes in this research are generated with the mesh 

density varying with the field gradient to produce sufficient number of nodes and 

Handles anisotropy and non-linearity Restricted to linear medium 
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elements according to the users intuition. As mentioned earlier, these meshes are all 

generated from an in-house mesh generator. With 3D modeling of complex structures, 

this approach is insufficient and one needs to be familiar with and use commercial 

mesh generators. These generators are adaptive in nature, produce optimal meshes-

and are in general interactive. The only drawback is the length of the learning curve 

for the user, and the interface to extract the data needed for inputting to the finite 

and boundary element algorithms. 

To pursue the second goal of this dissertation, a hybrid 3D finite-boundary el­

ement model is developed. To the author's knowledge, the chosen formulation has 

not been applied to electromagnetic NDE applications. The magnetic vector poten­

tial and the electric scalar potential are the variables in the 3D formulation. The 

vector potential is chosen as it offers generality and the convenience of continuity 

over material interfaces and discontinuities. The hybrid technique has no restriction 

on any parameters. The number of nodes, elements, material properties, frequency, 

geometry etc are not restricted by any means and therefore the model is general. The 

hybrid finite-boundary element (FE/BE) formulation for eddy current NDE derives 

benefits from both techniques. Major advantages of this formulation are: 

• this general purpose formulation is applicable to most quasi-static electromag­

netic phenomena which includes modeling of power devices such as transform­

ers, motors and other electrical engineering applications. 

• the boundary element formulation for the exterior represents exactly the bound­

ary at infinity. Thus only discretizing around the region, of interest is needed.The 

BIE derived for the curl-curl equation makes the linking process between the 

two formulations straightforward. Identifying the Green's function is relatively 
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easy as it corresponds to the 3D free space Green's function. 

• the finite element formulation discretizes the curl-curl equation which handles 

non-linear magnetic permeability and anisotropy. Imposing the Coloumb gauge 

guarantees the uniqueness of the magnetic vector potential. The scalar potential 

is essential for modeling multiple materials or interfaces with different conduc­

tivities or zero conductivity regions. This enables modeling a wide class of 

materials and problems. 

• With finite elements, discretizing the volume of the probe coil and the conduc­

tor, one can study the energy/defect interaction and also obtain the transducer 

response. This was the main criterion that the model was required to fulfill. 

One disadvantage of the hybrid FE/BE method is that the final global matrix is 

non-symmetric and loses the sparsity .pattern of the finite element matrix. 

The results obtained for the coil in air modeled zero conductivity regions, and 

the table of inductance calculations for increasing discretization showed the value 

converging to the desired inductance. Modeling of the jDrobe over an aluminum block, 

handles materials with different conductivity. Predictions of the lift-off characteristics 

are a measure of change in flux linkage as the probe is lifted off the block. Similarly 

eddy current density plots are not measurable experimentally, but are of significant 

importance to the understanding of the physical phenomenon. Tht results from the 

3D hybrid FE/BE algorithm compared to experimental data confirmed the feasibility 

of using the hybrid formulation for eddy current NDE and other applications. 

Most 3D finite, boundary element or hybrid models solving vector boundary 

value problems are executed on a supercomputer to handle reasonably sized meshes. 
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This feasibility study, conducted on a workstation confirmed the qualitative nature 

of the results as an initial step to validate the formulation. It is planned, as discussed 

in the following pages, to utilize a supercomputer or parallel machine in further 

development of the 3D hybrid FE/BE model. 

Future Work 

Suggestions for future research based on this dissertation can be grouped into 

two major categories: 

1. modifications to the 3D hybrid finite-boundary element model to test the for­

mulation more rigorously 

2. ideas for utilizing the FEM or the BEM as applied to electromagnetic NDE 

The implementation of the formulation on the workstation precluded the author 

from testing the algorithm on more dense discretizations due to the limitation of the 

computer. In order to obtain more data with the same or other geometries using the 

hybrid FE/BE formulation, the following suggestions are made: 

• Increase discretization for both the finite and boundary element formulations. 

• Execute the algorithm on a supercomputer or transfer the code to a parallel 

machine such as the Mas-Par at the Scalable Computing Lab at Ames Labora­

tory. Some effort will be needed to rewrite part of the code to benefit from the 

parallel architecture. However the limitations of storing large stiffness matrices 

and solving" the system of equations can be overcome. 
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• Investigate if the energy method is applicable to the hybrid code for computing 

the probe impedance for 3D geometries. 

• Use computer graphics to plot the eddy current density or flux contours for any 

of the 3D geometries for better visualization. 

It is essential that some resources need to be devoted to utilize the benefits of 

existing commercial mesh generators. A general purpose interface routine could be 

developed for the IDEAS package to extract the mesh information needed for the 

finite and boundary element software. 

To compute probe impedance values needed for probability of detection models or 

other CAD models, a boundary element formulation for eddy current analysis should 

be considered. 

With parallel machines being more easily accessible than before, considerable 

efforts need to be channeled to modify both, the boundary and finite element models 

to be executed on these machines. 

Finally, from the experience gained in this research, one can conclude that for a 

particular application, a user must identify his or her needs very thoroughly. Then, 

the user must take into account the available computer resources, the time required 

to solve the given problem and the post-processing needs. With this background 

information, the user can make an intelligent guess as to which numerical model 

would best satisfy the given specifications. 

To conclude this dissertation, the author tried to fulfill his goal of using the 

dissertation as a platform to increase the awareness of the benefits of numerical 

modeling in electromagnetic NDE. 
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APPENDIX A. SHAPE FUNCTIONS FOR ISOPARAMETRIC 

ELEMENTS 

• 3 node triangular element for 2D finite elements 

N i { r , s )  =  I  —  r  —  s  

Noir, s) = r 

7V3(r, s) = 3 

• 4 node quadrilateral element for 2D finite elements and 3D boundary elements 

Ni{r,s) = |(1 - r)(l - 6) 

N 2 { r , s )  =  | ( 1  + r ) ( l  -  s )  

= 5(H-r)(H-s) 

A^4(r,5) = |(1 - r)(l + 6) 

• S node box elements for 3D finite elements 

N i ( 7 \ s , t )  =  g ( l  +  r ) { l  -  s ) ( l  -  t )  

N 2 { r , s , t )  =  g ( l  +  7 - ) ( l  +  5 ) ( 1  —  t )  

-^3('', -^1 — ^')(1 + — 0 

N ^ ( r , s , t )  =  ̂ ( 1  -  r ) ( l  -  -  0  

N ^ ( r ,  s ,  t )  =  g ( l  +  7 ' ) ( 1  —  s ) ( l  +  t )  
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N Q { r , s , t )  = |{1 + r)(l + s)(l + i) 

Nj{r,s,t) = g(l-r)(l +5)(1 + f) 

^8(r,a,<) = g(l -r){l +s)(l 4-i) 
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APPENDIX B. DIRAC DELTA FUNCTION 6{f) AND ITS 

PROPERTIES 

Definition; 

Special case : 

<^(7-^ = 0 f^O 

y /(f36(r)dT = /(O) 

J  6 { f ^ d T  =  1 

If the origin is shifted, then the shift property of the delta function results as: 

6{r'Y — r2) = 0 ''17^ '"o 

j f{ri)6{r I -rVjdr = 

— /'o) = ^(ro — r"!) 

In general 6 [ r )  is not really a function, since it is undefined (infinite) at f  = 0. It is 

therefore defined as a distribution [123]. 
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APPENDIX C. DERIVATION OF THE GREEN'S FUNCTION FOR 

THE ACPD METHOD IN 2 DIMENSIONS 

The governing equation for the ACPD method in 2D is the scalar Hehnholtz 

equation given by 

v'^Ê-k-Ê = Q (CM) 

where =  j o j f i c r .  From equation (4.1), the Green's function satisfies 

= (C.2) 

where L is the Sturm Liouville operator. Thus 

G(ri,r2) = Z,-l6(n-r2) (C.3) 

For this particular case, L = thus 

(V- - t-)G'(,-i, 7-9) = - rg) (C.4) 

Integrating both sides over a small volume gives: 

J — k'')G{r'i,7^)dv = J ^(y-j —r'2)dv 

/ V^-A;^)G(n,r2)j« = 1 (C.5) 
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Condsider equation (B.4), and using the cylindircal coordinate system { r , 9 , z ) ,  

gives: 

In 2D, it is assumed that G is constant in the 0 direction, and ^ Q = 0. Thus for 
oO" 

this case. 

For 7' 7^ 0, 

- r^k-G = 0 (C.S) 
or 

The solution of the above equation is. given as [123] 

G'(7"1,7-2) = AlQ(rk) + BKQ(rk) (C.9) 

where /G and A'Q are the modified Bessel functions. To determine the constants .4 

and B by considering the asymptotic behaviour of the functions /Q and A'Q. 

The asymptotic limits for /Q and A'Q are ; 

As r —»• 0, A'Q —>• oo and /Q —> 1 and as r oo, A'Q —> 0 and 7Q —> oo 

Thus as r 0, /I = 0. Thus the solution is 

G  = B K Q { r k )  

From applying appropriate boundary conditions and further limit analysis. B  =  

The Green's function for the ACPD method in 2D is 

6'(7-|,7-2) = :^A'O(7-^-) (C.IO) 
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APPENDIX D. NUMERICAL INTEGRATION 

The need for numerical integration is to find the elemental contribution in the 

finite and boundary element formulation using isoparametric elements. 

An integral evaluated using Gauss quadrature is written as 

f { x ) d x  =  ̂ w i f ' { x i )  (D.l) 
i 

where are a set of special weights attached to the quadrature points These 

weights and points are well documented in the literature. 

For a linear element the minimum number of quadrature points is one and for a 

second order element at least two quadrature points are necessary. In this disserta­

tion, the two point quadrature scheme is used. It can be written as 

-1 i-i i-i 2 2 2 
/ 1 / 1 / 1 ^ (D.2) J - l J - l J - l  

where s^t and q  are the quadrature points in the three directions. l U j ,  l u j  and w j ,  

are the correponding weights. Thus a total of eight quadrature points are needed to 

integrate over each element. Table C.l and Table C.2 give the quadrature points and 

weights. 



www.manaraa.com

146 

Table D.l: Two point Gauss quadrature weights and points 

Weights Gauss Points 

1.0 -.577350269189626 

1.0 +.577350269189626 

Table D.2: Three point Gauss quadrature weights and points 

Weights Gauss Points 

.555.555555555556 -0.774596669241483 

.888888888888889 0.0 

.555555555555557 +0.774596669241483 
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